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Kurzfassung

In der vorliegenden Dissertation wird eine neue variationelle Methode vorgestellt,

welche die Vorteile der exakten Diagonalisierung nach dem Lanczos Verfahren für

kleine Systeme mit der variationellen Monte-Carlo Methode für grosse Systeme

verbindet. Da diese neue Methode weder von der Existenz eines kleinen Param-

eters abhängt noch unter dem Fermionen-Vorzeichenproblem leidet, eignet sie sich

gut zur Untersuchung fermionischer Systeme mit starken Korrelationen.

Nach einer kurzen Einführung im ersten Kapitel über ein paar Modelle stark kor-

relierter Elektronensysteme, welche die Motivation bilden, den neuen Ansatz zu ent-

wickeln, wird die Methode im Detail in Kapitel 2 erklärt. Lanczos Iterationen führen

zu einer kontrollierten Verbesserung einer vorurteilsfreien variationellen Wellenfunk-

tion. Eine Verallgemeinerung der Lanczos Operatoren erlaubt es, genauere Resultate

mit nur einer Iteration zu erhalten. Dadurch werden die übermässigen Rechenzeiten

für die Lanczos-Iterationen höherer Ordnung vermieden. Anstatt mehrere Iteratio-

nen auszuführen, kann systematisch eine Hierarchie immer allgemeinerer Lanczos

Operatoren konstruiert werden, mit welchen eine Iteration durchgeführt wird. Im

Falle des t-J Modells führt dies zu einer getrennten Behandlung der kurz- und lan-

greichweitigen Eigenschaften des Grundzustandes. Mit Hilfe eines kombinierten Kri-

teriums für die Energie und die Varianz einer variationellen Wellenfunktion vor und

nach der Lanczos Iteration, ist es möglich die Qualität des Ansatzes zu überprüfen

und dadurch den systematischen Fehler, welche in der Wahl einer variationellen

Wellenfunktion besteht, zu einem grossen Teil zu beseitigen. Kapitel 3 diskutiert

die Details, welche mit der Implementation des Algorithmus zusammenhängen.

Die Methode wird zuerst am Fall des Heisenberg-Modells in Kapitel 4 getestet.

Dieses Modell erlaubt äquivalente Formulierungen in bosonischer oder fermionischer

Darstellung. Die neue Methode kann an der fermionischen Formulierung getestet

werden, indem man die Resultate mit den zuverlässigen Daten, welche aufgrund der

bosonischen Darstellung zur Verfügung stehen, vergleicht. Die neue Methode liefert

eine bessere obere Schranke für die Grundzustandsenergie als frühere Rechnungen,

welche sich ebenfalls auf die fermionische Darstellung abstützten. Der Vergleich mit

Quanten-Monte-Carlo Resultaten für den bosonischen Fall zeigt, dass mit jeder Ite-

ration etwa 80% der noch fehlenden Korrelationsenergie in der neuen Wellenfunktion

berücksichtigt wird, sofern der Hilbert-Raum mit der richtigen Symmetrie verwendet

wird. Ferner werden Messungen der Spin-Spin-Korrelationsfunktion gezeigt, welche

einen guten Wert für die alternierende Magnetisierung liefert.

Im Kapitel 5 werden Berechnungen zum t-J Modell präsentiert, der wichtigsten

Anwendung der neuen Methode in dieser Dissertation. Für dieses Modell gibt es

keine äquivalente bosonische Darstellung und die Quanten-Monte-Carlo Methoden



sind aufgrund des Vorzeichenproblems für Fermionen nur stark eingeschränkt ver-

wendbar. Mit der neuen Methode, die nicht unter dem Vorzeichenproblem leidet,

können die Resultate der exakten Diagonalisierung für kleine Systeme reproduziert

werden. Die gleichen Untersuchungen werden dann an einem viel grösseren System

durchführt, als es mit der exakten Diagonalisierung möglich wäre. Die Messung

der Energie und der Varianz zeigt eine gute Konvergenz zum Grundzustand für

die gewählten Variationswellenfunktionen. Mittels der Maxwell-Konstruktion erhält

man eine Abschätzung für die Phasenseparationsgrenze im Phasendiagramm. Durch

die getrennte Behandlung des kurz- und langreichweitigen Verhaltens der Wellen-

funktion mittels der verallgemeinerten Lanczos Operatoren, ist es möglich die lang-

reichweitige Paar-Paar-Korrelation des Grundzustandes zu messen. Diese ist ein

Mass für den Supraleitungs-Ordnungsparameter und sie erlaubt es eine Region mit

d-Wellen-Supraleitungs-Ordnung im T = 0-Phasendiagram des 2-dimensionalen t-J

Modells zu identifizieren.

Die Resultate für das t-J Modell zeigen, dass diese neue Methode der verallge-

meinerten Lanczos Operatoren in der Variations-Monte-Carlo Methode ein mächtiges

Werkzeug darstellt, um vorurteilsfreie Resultate für ein nicht triviales Quanten-

Vielteilchensystem zu erhalten. Daher erwartet man, dass sich die neue Methode

auch in anderen Problemen bewähren wird. Dies ist speziell dort zu erwarten, wo

Vorzeichenprobleme den Gebrauch der üblichen Quanten-Monte-Carlo Methoden

einschränkt.
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Abstract

In this thesis a new variational method is presented which combines the advan-

tages of the Lanczos method used in exact diagonalizations of small systems and

the variational Monte Carlo method used to investigate large systems. As this new

method does not depend on the existence of a small parameter nor is limited by the

fermion sign problem it is well suited for the investigation of fermionic systems with

strong correlations.

After a short introduction in the first chapter to some models of strongly corre-

lated many electron systems which motivated the development of the new approach,

the method is explained in detail in chapter 2. Lanczos iterations can be used to

construct an unbiased systematic improvement of a variational wavefunction. A

generalization of the Lanczos operators allows one to obtain more accurate results

with only one iteration. This avoids the excessive time requirements of higher order

Lanczos iterations. Instead of performing many iterations one can systematically

construct a hierarchy of ever more general Lanczos operators to be used in a single

iteration. For the case of the t-J model this amounts to a separate treatment of the

short- and long-range properties of the groundstate. Using a combined criterion of

energy and variance of the variational wavefunctions before and after the iteration it

is possible to judge the quality of the starting variational wavefunction and thereby

eliminate much of the bias which lies in the choice of such a wavefunction. Chapter 3

discusses the details associated with the implementation of the algorithm.

The method is tested first for the Heisenberg model in chapter 4. For this model

there are equivalent formulations using boson and fermion representations. It is

possible to test the new method for the fermionic formulation by comparing with

the reliable results available for the bosonic representation. Our approach leads to a

better upper limit to the groundstate energy than previous calculations which also

use a fermionic representation. The comparison with Quantum Monte Carlo results

for the bosonic case shows that the presented method is able to recover about 80%

of the missing correlation energy in each Lanczos iteration when using the right

symmetry sector of the Hilbert space. Measurements of the spin-spin correlation

which yield a good value for the staggered magnetization are also presented.

In chapter 5 calculations on the t-J model are presented, which constitutes the

main application for the new method in this thesis. For this model there is no equiva-

lent bosonic representation and Quantum Monte Carlo methods are severely limited

by the fermion sign problem. With the new method, which does not suffer the sign

problem, the results of exact diagonalization for small systems can be reproduced.

Then the same analysis is performed on a much bigger system than would be pos-

sible with the exact methods. The energy and variance are measured, which shows



good convergence to the groundstate for the chosen set of wavefunctions. With a

Maxwell construction one finds an estimate for the phase separation boundary in

the phase diagram. The separate treatment of the short- and long-range behavior

of the wavefunctions using the generalized Lanczos operators makes it possible to

measure the long-range pair-pair correlation of the groundstate. This is a measure

of the superconducting order parameter and it allows the identification of a region

of d-wave superconducting order in the zero temperature phase diagram of the 2

dimensional t-J model.

The results on the t-J model show that this new method of the generalized

Lanczos operators in variational Monte Carlo provides a powerful tool to obtain

unbiased results for a non-trivial quantum many body system. This suggests that

the presented method could be used sucessfully to address other problems, especially

those where the standard Quantum Monte Carlo methods are of limited use due the

fermion sign problem.
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Chapter 1

Models for the Copper Oxide
Superconductors

Many of the main characteristics of the copper oxide superconductors are conse-

quences of the fact that they are close to a Mott insulator. Typical materials have a

“parent” compound which is an antiferromagnetic insulator. Upon doping the anti-

ferromagnetism is quickly suppressed and a superconducting phase appears with a

high transition temperature compared with the conventional phonon-driven super-

conductors. This high transition temperature suggests that the superconductivity is

caused by the same interactions that lead to the Mott insulator which in turn could

explain the unusual energy scales involved.

The various copper oxide superconductors share one common feature which are

the 2 dimensional copper-oxygen planes. In these planes the copper atoms form a

regular square lattice. Every two neighboring copper atoms share an oxygen atom.

The rest of the material serves as a charge reservoir and separates the copper-oxygen

layers. The first task is therefore to understand the physics of the CuO2 planes. For

a two dimensional system there cannot be superconducting long-range order but

only a power law decay at finite temperature as shown by Hohenberg[1]. However,

there can be a Kosterliz-Thouless transition[2] at finite temperature and the system

shows zero resistance even above zero temperature[3]. Similarly, there can be no

antiferromagnetic long-range order[4] at finite temperature. In both cases a small 3-

dimensional coupling can stablize the groundstate of the 2-dimensional planes even

at finite temperature. To understand the cuprates it is then important to investigate

the nature of the groundstate and the lowest excited states of the CuO2 planes.

The proximity to a Mott insulator also means that the correlations between the

electrons will not be screened. The models will therefore describe strongly correlated

electrons for which mean field descriptions do not provide a good starting point for

perturbation expansions. To date, the most powerful methods for dealing with

strongly correlated electron systems are to a large extent numerical. It is also the
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aim of this work to provide additional numerical evidence for the presence or absence

of superconductivity in the groundstate of strongly correlated models.

The models which are introduced in the following sections are among the simplest

to describe strongly correlated electron systems. There has been a lot of research

devoted to these models. The discovery of high Tc superconductors has been a

stimulus to this interest so that a vast literature exists on the subject. A review

over the current understanding can be found in the reviews by Dagotto[5], Kampf[6],

and Brenig[7]. A compact exposition of the problem of strongly correlated electrons

in general and the high Tc superconductors in particular can be found in Fulde’s

book[8].

1.1 The Three-Band Hubbard Model

As a first step towards a description of the CuO2 planes we identify the relevant

orbitals of the copper and oxygen atoms. These are the 3d orbitals for the Cu and

the 2p orbitals for the oxygens. All other orbitals are either well below or well

above the Fermi energy. Neglecting hybridization and the interactions between the

electrons, the oxygen p-orbitals would be filled, whereas the copper d-orbitals have 1

hole per site, for the insulating compounds. Due to the lattice structure the orbital

with dx2−y2 character will contain this hole. Since this is closer to the configuration

O-2p6 Cu-3d10 where these orbitals are all filled, it is convenient to use this as the

vacuum and work in the hole representation. Between the dx2−y2-orbital and the

p-orbitals which point towards the Cu atoms there is a strong hybridization, which

is described by the hopping term with coefficient tpd in Eq. 1.1. Furthermore, the

coulomb repulsion of two holes on the same Cu (Ud-term) or O site (Up-term) as well

as on neighboring Cu and O sites (Upd-term) has to be taken into account. Together

with the on-site energies εd and εp and an oxygen-oxygen hopping tpp we then arrive

at the Hamiltonian

H = − tpd

∑
i,τ,σ

(
p†i,σdi+τ,σ + h.c.

)
− tpp

∑
i,τ 6=τ ′,σ

(
p†i+τ,σpi+τ ′,σ + h.c.

)
+ εd

∑
i

nd
i + εp

∑
i

(
np

i+x̂/2 + np
i+ŷ/2

)
+ Up

∑
i

(
np

i+x̂/2↑n
p
i+x̂/2↓ + np

i+ŷ/2↑n
p
i+ŷ/2↓

)
+ Ud

∑
i

nd
i↑n

d
i↓ + Upd

∑
i,τ

nd
i n

p
i+τ

(1.1)

where the i run over the Cu sites and τ ∈ {±x̂/2,±ŷ/2} points to the O sites. p†i+τ

and d†i are the fermionic creation operators for the oxygen p- and copper d-orbitals.

The parameters have been estimated by a constrained density functional method by

2



Hybertsen et al.[9] to be (in eV)

εp − εd tpd tpp Ud Up Upd

3.6 1.3 0.65 10.5 4 1.2

These values are in agreement with electron energy loss spectroscopy (EELS) exper-

iments by Nücker et al.[10]. Already for the terms included in the 3-band Hubbard

model one can see that Upd < Ud, Up and tpp < tpd. It is then reasonable to neglect

contributions for the larger distances.

1.2 The t-J Model

The 3-band Hubbard model presented in the previous section is still too complicated

to be treated either numerically or analytically. Its low energy physics can be cap-

tured with the t-J model as shown by Zhang and Rice[11]. The oxygen p-orbitals

surrounding each Cu site can be replaced by linear combinations with dx2−y2- and

s-like symmetry. Due to their symmetry, the s-like orbitals will not hybridize with

the copper dx2−y2 and form an band which is completely filled. The other band will

hybridize via tpd with the Cu d-orbital and an additional hole will form a singlet

with the hole on the Cu site (Zhang-Rice singlet). The strong Coulomb repulsion

effectivly suppresses double occupancy, so that the kinetic energy is given by the

Gutzwiller projected hopping. Furthermore, due to the overlap on the oxygens, an-

tiparallel spins on neighboring Cu have a lower energy, yielding a antiferromagnetic

exchange coupling. This leads to the t-J model

H = −t
∑
〈i,j〉,σ

(
(1− ni,−σ)c†iσcjσ(1− nj,−σ) + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

1

4
ninj

)
(1.2)

where the c†iσ are the creation operators for the new orbitals. By comparing the low

energy spectrum of the 3-band Hubbard model and the t-J model for small clusters

Hybertsen et al.[12] have found the parameters for the t-J model as t=0.43eV and

J=0.128eV. Of these two values the antiferromagnetic coupling J agrees very well

with experiments, whereas t is less accurately known. Furthermore, it is likely that

the kinetic energy is modified slightly with a next nearest neighbor hopping term

with t′ < 0.

1.3 The One-Band Hubbard Model

Another model which has been receiving a lot of attention is the original (1-band)

Hubbard model[13, 14].

H = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (1.3)
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This corresponds to a description of the CuO2 planes starting from the 3-band

Hubbard model when εp − εd > Ud � tpd. Hybertsen et al.[12] also compared the

low-energy spectrum of the 1-band Hubbard model to the 3-band Hubbard model

and arrived at the values t=0.43eV and U=5.4eV, i.e., U/t ∼ 12, which is a bit

more than the bandwidth.

It should be noted that the 1/U expansion of the 1-band Hubbard model also

leads to the t-J model, with J = 4t2

U
. Such an expansion also generates a 3-site term

of the form

H3 = −J ′ ∑
i,τ 6=τ ′,σ

(
c̃†i+τ,σ c̃

†
i.−σ c̃i,−σ c̃i+τ ′,σ + c̃†i+τ,−σ c̃

†
i,σ c̃i,−σ c̃i+τ ′,σ

)
(1.4)

with c̃†iσ = (1 − ni,−σ)c†iσ for constraint hopping to prevent double occupancy. In

the expansion J ′ = t2

U
is of comparable magnitude as J . Of course, such a 3-site

term also appears in a direct derivation of the t-J model from the 3-band Hubbard

model. However, it will in general not have a coefficient which is fixed relative the

the J-term. Due to the overlap of the hybridized orbitals on the oxygen sites J will

be considerably larger than J ′. Some of the differences between the strong coupling

1-band Hubbard model and the t-J model may be attributed to this 3-site term.

1.4 Some Known Results about the t-J Model

In the following we will describe some of the known results and open questions about

the t-J model. Again, for a more complete overview one should consult the recent

reviews on the subject[5, 6, 7].

1.4.1 Magnetic Order

For half-filling (i.e., one electron per Cu site in the Zhang-Rice orbital) the t-J model

reduces to the Heisenberg model. The electrons cannot move due to the constraint

of no double occupancy and only the the spin exchange interaction is relevant. It is

generally agreed that the antiferromagnetic Heisenberg model provides an accurate

description of the undoped parent materials[15].

Experimentally antiferromagnetic long-range order is characterized by a finite

ordering Néel temperature TN . For the undoped materials TN is typically 300 K.

This long-range order is also observed in doped materials with low hole doping.

However, TN is quickly suppressed with hole doping and for more than about

0.02 holes per copper site (in La2CuO4) the long-range order is completely sup-

pressed(see, e.g., Birgeneau[16], or Keimer et al.[17]). Compounds with larger dop-

ing only show short-range antiferromagnetic order characterized by a finite correla-

tion length which is roughly the average separation distance between the holes[18].

4



The short-range order persists up to high dopings and even into the superconducting

region[18, 19, 20, 21, 22, 23, 24]. Furthermore, neutron scattering experiments have

revealed incommensurate spin fluctuation for La2−xSrxCuO4 with x = 0.075 and

x = 0.14[24, 25], where the peak at (π, π) splits and moves towards (π, 0), (0, π).

However, no static incommensurate order has been observed (as in the three dimen-

sional Mott-Hubbard system V2−yO3).

In the t-J model the movement of the holes destroys the antiferromagnetic align-

ment of the spins and leads to a suppression of the long-range order. This has been

verified by variational Monte Carlo, which finds a rapid suppression of antiferromag-

netism with doping[26, 27]. The magnetic properties of the t-J model have been

investigated in more detail by Singh and Glenister[28] using high-temperature ex-

pansion. They find a sharp antiferromagnetic peak in the spin-spin structure factor

at half filling compatible with antiferromagnetic long-range order. At finite doping

this peak is still present although it is suppressed. Furthermore they find (short-

range) incommensurate spin order at higher dopings. These results suggest that the

t-J model is able to explain the main features of the magnetism in the cuprates.

Another type of magnetic order, ferromagnetism, occurs at low hole doping for

small antiferromagnetic coupling J � t. For one hole Nagaoka’s theorem[29] states

that the groundstate is a fully polarized ferromagnet. This does not address a finite

density in the thermodynamic limit directly, but high-temperature expansion[30]

and exact diagonalizations of small cluster[31] find a ferrimagnetic (i.e., not fully

polarized) region at small hole doping for J/t < 0.1.

1.4.2 Hole Binding and Phase Separation

If J � t then the energy in the t-J model is determined by the Heisenberg term

alone and the system tries to align as many neighboring spins as possible antiparallel.

When holes are present they break the adjacent bonds. To lower the energy the

holes will cluster together so that they break the fewest number of bonds. The

system will separate into a completely antiferromagnetically aligned and an empty

phase[32]. This phase separation will persist even when the kinetic energy becomes

more important. However, the empty phase will be replaced by a phase with a

finite density of electrons.1 The line of phase separation has been determined by

high-temperature expansion in one[33] and two dimensions[34].

It is still an open question, which is the lowest J/t necessary for phase separation.

While Emery et al.[32] conjectured that phase separation would occur at all values of

J the high-temperature expansion by Putikka et al.[34] clearly shows a finite critical

1In one dimension at intermediate values of J/t the phase separation occurs between a phase
with finite density and the empty phase[33].
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value for JPS ∼ 1.2t. Putikka et al. also note that the phase separation line in 2D

behaves rather different than in 1D where the phase separation line is at higher J

for lower hole densities. They attributed this to the larger spin disturbance around

the hole in 2D. This was also simulated in 1D by Prelovšek, Bonča, and Sega[35] by

adding a longer-range spin exchange which lead to a behavior consistent with 2D.

It is clear that in 2D (as opposed to 1D) the holes can arrange in a variety of ways.

Recently, Prelovšek and Zotos[36] have investigated the arrangement of 2 and 4 holes

on systems of 18, 20, and 26 sites using exact diagonalization and extrapolations

from a restricted basis set. They find that from J > Jc ∼ 0.2t to J < Js ∼ 1.5t the

holes form independent pairs while above Js they tend to align in the (1,0) or (0,1)

direction before the compact clustering of phase separation begins to dominate at

higher J > J∗
s ∼ 2.5t. From their calculations one can conclude that a tendency

towards a “striped phase” with the holes forming domain walls corresponding to

a charge density wave (CDW) and a spin density wave (SDW) is realized before

charge separation sets in. Many calculations may therefore underestimate the phase

separation line. The incommensurate SDW could also explain the splitting of the

peak at (π, π) for the short-range AF order as discussed above.

1.4.3 Superconductivity

Many of the methods that were successful in establishing results on the spin order

or phase separation have not been able to provide evidence for or against supercon-

ductivity. Due to the sign problem quantum Monte Carlo methods were not able

to reach low enough temperatures to show clear signals of superconductivity (e.g.,

see Imada and Hatsugai[37], Imada[38], and Moreo[39]). With high-temperature

expansions the pair-pair correlation functions have not yet been investigated. It

is also not clear, whether series of high enough order can be calculated to reach a

temperature below which a signal of superconductivity would be observed.

Recently, there has been some progress in the search for superconductivity. In

order to form a condensate, the system should contain enough holes. For a 4 × 4

system the case of quarter filling is the most likely candidate for a condensate.

Indeed, Dagotto and Riera find a strongly enhanced pair-pair structure factor[40].

Their result indicates that the superconductivity is most likely of dx2−y2 symmetry.

However, one should notice that the 4× 4 system is still quite small with a largest

separation of two points of about 2
√

2 ≈ 2.8 (using periodic boundary conditions).

Much of the signal may therefore be due to short-range correlations. Nevertheless,

it provides a strong indication for the existence of d-wave superconductivity in the

t-J model. Results for bigger clusters of up to 26 sites have been obtained by Ohta

et al.[41]. They investigated the anomalous Green’s function and were able to fit
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their data to a BCS ansatz. The d-wave gap which they observe grows roughly

linearly with J .

For the 1-band Hubbard model Monthoux and Scalapino[42] have used a con-

serving fluctuation exchange approximation to obtain a self-consistent solution for

the momentum- and frequency-dependent gap. They find a symmetry for the gap

of dx2−y2 type. The low temperature magnitude for the gap is very large with

2∆(0)/kTc ∼ 10. Because of their calculation is performed on a large lattice of

128 × 128 sites the finite size effects will be very small. However it is unclear how

much the conserving fluctuation exchange approximation affects the results.

Even though direct evidence for superconductivity is limited, there are varia-

tional calculations which favor superconductivity. However, they can only provide

indirect evidence, because their bias. The variational wavefunctions are chosen from

a limited set and cannot rule out some other groundstate with a different order not

contained in this set. This is especially true for the case of the t-J model where var-

ious magnetic phases and phase separation are competing and may be the dominant

instability. Nevertheless, variational studies provide useful information about the

relative stability of phases and are a good starting point for further investigations.

For the Hubbard model Yokoyama and Shiba[43] found d-wave superconductivity

to be most favorable. For the t-J model including the 3-site term, i.e., the strong

coupling limit of the 1-band Hubbard model, Chen et al.[44] and later more detailed

Li et al.[45] also found the d-wave state to have the lowest energy from a critical

hole density of a few percent onwards, where antiferromagnetic order is suppressed.

For higher dopings above 10 % where the 3-site term becomes important they find

a mixed s+id state to be energetically favorable. Giamarchi and Lhuillier[27] also

investigated the t-J model (without the 3-site term) and found the d-wave state

to be stable up to a hole density of about 0.4. Furthermore, attempts have been

made to improve the variational state using the power method[46, 47, 48] but these

calculations are currently restricted to rather low electron densities. However they

are able to address the question of the presence of a Luttinger-Liquid, which has

also been investigated by variational wavefunctions[49, 50].
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Chapter 2

The Method

The work presented in this thesis relies heavily on the Rayleigh-Ritz variational

principle. With the availability of computers this method has become an important

tool. Typically the necessary expectation values are computed by means of Monte

Carlo sampling. This is possible for boson[51] as well as for fermion[52] systems.

We defer the discussion about how the sampling is actually done to Chapter 3 and

concentrate here on the physically important aspects of the method.

2.1 The Rayleigh-Ritz Principle and Generaliza-

tions

The Rayleigh-Ritz variational principle is one of the most powerful nonperturbative

methods in quantum mechanics[53]. Given a system with a Hamiltonian H, we

can take any state |Ψ〉 from the Hilbert space, and we get an upper bound to the

groundstate energy, E0, by
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

≥ E0 (2.1)

This can be easily seen, if we expand |Ψ〉 in terms of eigenstates |n〉 with energies

En

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=
∑
n

En
|〈n|Ψ〉|2

〈Ψ|Ψ〉
= E0 +

∑
n

(En − E0)
|〈n|Ψ〉|2

〈Ψ|Ψ〉
≥ E0 (2.2)

If we have a set of states we can choose the “best” approximation to the groundstate

as the one with the lowest expectation value for the energy. However, we should

keep in mind that the only rigorous result is the upper bound to the groundstate

energy. There is no criterion about how close any other property of the groundstate

is realized in this approximation.

Let us consider the following example. The Hartree-Fock method tries to find the

best Slater determinant to approximate the groundstate, i.e., the best wave function

of an effective one-particle description. This will lead to a mean field theory, where
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each electron experiences all the other electron as an averaged field. Starting from

the mean field solution, perturbation theory can be used to obtain reliable quantita-

tive results. The success of this approach is based on the observation that a weakly

correlated system is already well described by independent electrons in an effective

potential, and that the remaining part of the Hamiltonian constitutes a small per-

turbation. The variational principle is then not the only argument for the quality of

the approximation. It mainly serves as a starting point for the perturbation analysis

and implies that the inclusion of correlations beyond the mean field approximation

will lower the energy.

This approach fails for strongly correlated systems. The remaining part that is

not included in the effective Hamiltonian is not small enough to allow for a per-

turbation expansion. For the t-J model an effective one-particle description is even

impossible because of the constraint of no double occupancy; most of the Slater

determinants are not part of the Hilbert space. One then has to project out the

double occupancy, which already induces some correlations between the electrons.

For numerical calculations the projection to fulfill the constraint does not pose any

particular problem. However, there is little control over the effect the projection has

on the different mean field wavefunctions. Furthermore, most numerical calculations

have to be done for finite systems, which leads to finite size effects. Nevertheless,

one can still compare the expectation values for the projected wavefunctions cor-

responding to various mean field approaches. This provides some indication about

which instability (magnetic, superconducting, etc.) is dominant.

Even for these strongly correlated systems we have some additional information

about the quality of a variational wavefunction. The variance, or its square root the

standard deviation, of the Hamiltonian measures the width of the energy distribution

of a wavefunction. It provides a criterion for how much a wavefunction deviates

from an eigenfunction[54]. The standard deviation σH of the Hamiltonian H for a

wavefunction |Ψ〉 is defined as

σ2
H =

〈
(H− 〈H〉)2

〉
=
〈Ψ|H2|Ψ〉
〈Ψ|Ψ〉

−
(
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

)2

(2.3)

A wavefunction which is close to the groundstate will have both a low variational

energy and a small variance close to zero; a small variance alone can also be achieved

by converging to an excited eigenstate.

To obtain a more quantitative picture, let us consider a variational wavefunc-

tion which is constructed as a linear combination of just two eigenstates. The two

eigenstates shall be a typical excited state with energy E1 and the groundstate with

energy E0. The probabilities for these eigenstates are ρ1 and ρ0 = (1− ρ1), respec-

tively. Then, we have for the energy expectation value E and the standard deviation
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σ

E − E0 = ρ1(E1 − E0) (2.4)

σ =
√

ρ1 − ρ2
1(E1 − E0) (2.5)

If we keep E1 fixed and use ρ1 to describe the convergence to the groundstate, we

can see that E converges linearly in ρ1 whereas σ decreases only proportional to
√

ρ1. If E1 is not kept constant or if more eigenstates are included in the variational

wavefunction, then almost any behavior for E and σ can be constructed. However,

we can clearly see that when both E and σ are lowered, more weight must be in the

lower energy eigenstates. The additional information contained in σ is the relevant

energy scale where the wavefunction has a considerable weight; for a given pair of

values E and σ, there is an upper bound for the weight at any energy E in an

interval dE of ρ(E)dE ≤ σ2

(E−E)
2
+σ2

.

2.2 Systematic Improvement by Lanczos Iteration

If we want more information about the groundstate, we need higher moments of

the Hamiltonian. Whereas the standard deviation is a measure of the width of the

probability distribution ρ(E), it doesn’t tell us on which side of the mean value E

it extends farther. This information is contained in the skewness

Skew(H) =

〈(
H− 〈H〉

σH

)3〉
(2.6)

which contains the third moment of the Hamiltonian. Higher moments will contain

even more information about the extent of the distribution.

To calculate the improved upper bound to the groundstate energy we can use

the Lanczos scheme[55]. If we apply the Hamiltonian n times to the wavefunction,

we can use the Rayleigh-Ritz principle for the ansatz

|ν0, ν1, . . . , νn〉 =
n∑

i=0

νiHi|Ψ〉 (2.7)

As can easily be seen, we need all the moments up to order 2n + 1 for n Lanczos

iterations. For this new wavefunction we can then evaluate any other expectation

value. E.g., if we also want to know the new variance, we have to include the next

even order moment (i.e., 〈H2n+2〉) in our calculation. The Lanczos method is most

easily expressed in terms of normalized basis states as obtained by the three term

recurrence relation[56]

H|Ψ0〉 = a0|Ψ0〉+ b1|Ψ1〉
H|Ψn〉 = an|Ψn〉+ bn|Ψn−1〉+ bn+1|Ψn+1〉, (n ≥ 1)

(2.8)
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where starting from |Ψ0〉 = |Ψ〉/
√
〈Ψ|Ψ〉 a new orthonormal set of basis states |Ψn〉 is

constructed in which the Hamiltonian has tridiagonal form, as can easily be seen. For

the n-th Lanczos iteration only the subspace spanned by |Ψ0〉, . . . , |Ψn〉 is considered.

We then need the values of a0, . . . , an and b1, . . . , bn. Using the notation Hn =

〈Ψ0|Hn|Ψ0〉 and hn = 〈Ψ0|(H−H1)
n|Ψ0〉 =

∑n−2
i=0 (−1)n

(
n
i

)
Hn−1H

i
1−(n−1)(−1)nHn

1

we obtain for the first few coefficients

a0 = H1

b1 =
√

h2

a1 = H1 +
h3

h2

b2 =

√
h4h2 − h2

3 − h3
2

h3

a2 = H1 +
h5h

2
2 + h3

3 − 2h4h3h2

h2(h4h2 − h2
3 − h3

2)

(2.9)

A further reduction from tridiagonal to diagonal form is in general not possible

in a finite number of steps, and one has to ressort to iterative methods. The QR and

QL algorithms are often used as they are numerically stable and fast converging[57,

58, 59]. A general presentation of available methods can be found in Ref. [60].

2.3 Limitations for Higher Moments and the Sign

Problem

While the above description of the Lanczos method as a variational approach is

mathematically straightforward, it has some inherent limitations. In the usual for-

mulation of the Lanczos method a new state is generated and has to be stored. For

each iteration the last two states are needed, so that the new state can replace the

one but last state. Each iteration then takes about the same amount of computing

time and the method is limited by the memory requirements to store the two states.

In the variational formulation of the Lanczos method of section 2.2 the new

states are given implicitly by polynomials of the Hamiltonian applied to the initial

trial wavefunction. This obviates the problem of memory consumption but the time

required for the evaluation of the moments grows exponentially with the number of

Lanczos steps. I.e., if we use a complete set of basis states, e.g., the configuration

basis |R〉 we have

〈Hn〉 =
∑

R1,R2

〈Ψ0|R1〉〈R1|Hn|R2〉〈R2|Ψ0〉 (2.10)

With higher order n the number of terms grows exponentially, which is the main
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reason for the increased time requirements. Using Monte Carlo sampling we will

only have to evaluate a fraction of all the terms, but the expectation values will be

known only within a statistical error. It is then important to find out up to what

accuracy the moments have to be known, and how small a fraction of the terms

(i.e., how little computing time) it takes to reach this accuracy. It turns out that in

general the eigenvalues of the Hamiltonian in the subspace corresponding to a finite

number of Lanczos iteration are more sensitive to deviations in the higher moments.

However, not all eigenvalues suffer this sensitivity in the same way. It is interesting

to discuss this issue in more detail.

This fact, that the error bars get bigger with the number of iteration, is some-

times referred to as another manifestation of the fermion sign problem of quantum

Monte Carlo. Superficially, especially from a practical point of view, this may be a

reasonable terminology. In both cases the quality of the initial trial wavefunction

determines how fast the iterations converge to the groundstate, and whether the

convergence is achieved before the errors make the result useless. However, there

are important differences to the fermion sign problem, which may lead to different

approaches for a solution. The big errors of the higher order iterations are not caused

by the fermionic nature of problem. Finding the eigenvalues of an operator from the

moments is one example of an inverse problem, which are often “ill-conditioned”[57].

Given any (Hermitian) operator, in our case the Hamiltonian H, and a wavefunction

in its spectral decomposition

H =
∑

i

Ei|i〉〈i| (2.11)

|Ψ〉 =
∑

i

αi|i〉 (2.12)

we can write the moments as

Hn = 〈Ψ|Hn|Ψ〉 =
∑

i

|αi|2 En
i =

∑
i

ρiE
n
i (2.13)

i.e., the moments Hn are a function of the weights ρi = |αi|2 and eigenvalues Ei.

This is numerically very stable, whereas the inverse problem of finding the energies

Ei and weights ρi from the moments Hn is very sensitive to small deviations, e.g.,

rounding or statistical errors.

Obviously, the uncertainty in the Ei depends on the initial wavefunction |Ψ〉.
Furthermore, not all of the Ei will suffer from deviations in the moments in the

same way. As a limiting case, let us consider the wavefunction |Ψ〉 = |0〉, i.e., ρ0 =

1, ρi = 0(i ≥ 1). Then E0 = H1 is already known from the first moment without loss

of accuracy and the higher moments contain no additional information. For a small

perturbation in the ρi, the higher moments start to contain the information about the
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corresponding Ei, but will be very sensitive to small deviations. One of the excited

Ei might enter then with such a large error, that it will be mistaken for the smallest

eigenvalue. For the Monte Carlo sampling the error can be measured, so that this

situation is easily revealed. However, a naive application of the Lanczos method,

which just calculates the lowest eigenvalue, becomes unstable when increasing the

number of iterations. Paradoxically, starting with a “better” wavefunction (i.e.,

with smaller ρi, i ≥ 1) amplifies this instability.

The information of E0 is obviously still contained in the moments Hn, and we

need a way to extract it. For n Lanczos iterations we obtain an n + 1 dimensional

subspace, and correspondingly an (n+1)× (n+1) tridiagonal matrix for the Hamil-

tonian. If we determine all eigenvalues of this matrix, we can separate those with

large from those with small errors. This allows us to calculate some eigenvalues

with a reasonable accuracy, without the need of excessive Monte Carlo sampling of

the higher moments. Alternatively we can variationally find a state in this n + 1

dimensional subspace, which minimizes both, the energy and its error according to

some criterion.1 This later approach will yield the best value possible that matches

the criterion.

A somewhat simpler approach to increase the stability is to use the power

method. The sequence of wavefunctions |φn〉 = (H −W )n|Ψ〉 increases the weight

of the eigenfunction with the largest absolute value of Ei −W . For an appropriate

W this will be the groundstate energy E0. |φn〉 converges to the groundstate for

n → ∞. 〈H2n+1〉 / 〈H2n〉 converges to E0 from above. As can easily be seen, this

value cannot provide a better variational upper bound as the approach described

in the last paragraph. However, it is considerably easier to calculate, and may be

the optimal method to analyze the higher moments. For the t-J model Chen and

Lee[61, 46, 47] have successfully used this method with up to 20 iterations.

A related issue concerns the case when two energies are much closer than the

typical energy differences, e.g., |Ei − Ej| � σH. Then they contribute to the mo-

ments almost as if it was one degenerate energy level. To resolve the individual

energy levels requires then in general many iterations and moments known with a

high accuracy. For any realistic calculation it is therefore virtually impossible to

resolve energy levels, which are much closer than one standard deviation.

From the discussion in this section we can conclude that the requirements for

the initial trial wavefunction are:

(a) there must be a substantial weight for the eigenfunctions whose energy we

want to determine; i.e., ρ0 � ρi except for n values of i, if we want to determine

the groundstate energy E0 in n iterations.

1E.g., we can minimize the energy plus one standard deviation.
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(b) σH = 〈H2〉 − 〈H〉2 should be small, e.g., on the order of the energy level

spacing we want to resolve. Alternatively, σH defines the energy scale which can

easily be resolved and energy levels which are much closer to each other require a

high accuracy, i.e., long computing times to be distinguished.

2.4 Separate Treatment of the Short- and Long-

Range Behavior

As we have seen in the previous sections, a straightforward combination of the

Lanczos method and the variational Monte Carlo approach leads to large errors even

for a moderate number of iterations or, equivalently, requires excessive computing

time to achieve a reasonable accuracy. Practical applications of this method are then

restricted to one or at most two iterations. Under these conditions it is essential

to make optimal use of this one iteration and to extract as much information as

possible.

Let us consider the effect of one Lanczos iteration. Many typical Hamiltonians

in solid state physics are short-ranged. The t-J model is an example where the

terms are restricted to nearest neighbors, and even in more generalized versions the

contributions become negligible when they extend over a few lattice spacings only.

An ordered phase like superconducting order is on the other hand characterized

by a certain long-range behavior. Starting from a general wavefunction without

any specific properties (like a random wavefunction in a typical Lanczos application

for exact diagonalization) n Lanczos iteration will change the correlations in the

wavefunction only on a length scale of na if a is the characteristic length scale of

the Hamiltonian (i.e., a = one lattice spacing in the t-J model). If we want to

investigate the presence or absence of an ordered phase, where the long-range order

is established at a characteristic length ξ, we would at least need ξ/a iterations to

obtain reliable results[56].

The standard Rayleigh-Ritz variational Monte Carlo approach typically uses

wavefunctions from a mean-field ansatz. These wavefunctions have a certain long-

range behavior built in, which is controlled by a variational parameter. The long-

range order is then well-described, but there is no control over the short-range part

of the wavefunction. For a system like the t-J Hamiltonian with strong short-

range correlations we cannot know how well the optimal variational wavefunction

reflects the long-range behavior of the groundstate, or whether it tries to achieve a

compromise to gain energy with the strong local terms of Hamiltonian.

The combined method can make use of the advantages of both methods. If we

start with a variational wavefunction which describes the right long-range behavior
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for the groundstate, then the Lanczos steps only have to adjust the short-range part

and only a few iterations are necessary to obtain a reliable approximation for the

groundstate. We can generalize the Lanczos steps not to use the Hamiltonian but

the most general linear combination of operators, which act on the same length scale

as the Hamiltonian and preserve its symmetries. Such operators con be constructed

systematically as is shown in section 2.6; e.g., if we restrict the operators to act on

nearest neighbor sites we end up with the same terms as in the t-J-V model, but with

arbitrary coefficients independent of the coefficients in the Hamiltonian. With these

generalized Lanczos operators already one iteration will yield an approximation of

the groundstate which incorporates the relevant features.

The remaining problem is then to find a criterion for when a wavefunction has the

right long-range behavior to be a good starting point for the iteration. The energy

does not provide this criterion, since from the energy alone the long-range order

may be over- or underestimated due to the short-range nature of the Hamiltonian.

However, we can use an indirect approach. If we start with a long-range order

which is too large, the Lanczos iterations will gradually shift the weight towards

smaller distances in order to suppress the long-range order. If on the other hand

we start with too small a long-range order, it will analogously be enhanced. The

right long-range behavior will be characterized by the fact that it is left unchanged

by the Lanczos iteration. This method can be thought of as “measuring” the long-

range behavior of the groundstate, by adjusting the long-range order until a local

perturbation will not affect it anymore.

2.5 Non-Variational Results from One Lanczos It-

eration

There is another way to extract more information from one (generalized) Lanczos

iteration. If we consider Eqns. (2.4) and (2.5) we can see that both E − E0 and σ2

vanish linearly with ρ1 for small values of ρ1. This should still be approximately true

for the case of a wavefunction which has most of its weight in the groundstate at E0

and the small remaining contributions are dominated by an energy E1. We can then

use the two values of E and σ2 before and after the iteration to extrapolate to σ2 = 0

and obtain an estimate for E0. This estimate will not be a variational bound and

it will also only be meaningful for a good starting wavefunction. I.e., only after we

have confirmed by the other criteria mentioned above that a wavefunction is a good

starting point for the iteration, we can use the extrapolation to obtain an improved

estimate for the groundstate energy. Furthermore, the extrapolation from a set of

wavefunctions close to the optimal may provide some indication of the error we can
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expect for the extrapolated energy.

2.6 Generalized Lanczos Operators

In section 2.4 we mentioned the use of generalized Lanczos operator to achieve

the optimal improvement in one iteration. These operators can be constructed

systematically.

E.g., the most general operator, which acts on nearest neighbors only, is a linear

combination of c†i,σ1
cj,σ2 , c†i,σ1

c†j,σ2
cj,σ3ci,σ4 , and c†i,σ1

c†i,σ2
cj,σ3cj,σ4 , where 〈i, j〉 runs

over all nearest neighbor pairs and σ1, . . . , σ4 take on any combination of the spin

projections (up or down, each). With the constraint of no double occupancy we can

leave out the last of the three sets. For other clusters than a nearest neighbor pair

there are analogous sets of operators.

Most of the linear combinations obtained in this way don’t preserve the symme-

try of the wavefunction. E.g., starting from a translationally invariant wavefunction

they will mix in states with momenta different from k = 0, and analogously they

will mix different spin excitations. If we want to investigate wavefunctions belong-

ing to a specific symmetry, we want to restrict the operators to those that leave

the symmetry invariant. This can be done by group theoretical projections onto

invariant representations[62, 63]. The space group symmetry is easily taken into

account. The whole cluster has to be translated and rotated in all possible ways

and the obtained operators have to be added.

The spin symmetry is a bit more involved. We have to perform the projection

for the continuous rotation group. Using the Euler angle representation, we obtain

the symmetric part AS of an operator A with

AS =
1

8π2

∫ 2π

0
dα
∫ 1

−1
d(cos β)

∫ 2π

0
dγ U(α, β, γ) A U(α, β, γ)−1 (2.14)

The creation- and annihilation-operators transform as

Uc†σU
−1 = e−iσα/2 cos(β/2)e−iσγ/2 c†σ + σeiσα/2 sin(β/2)e−iσγ/2 c†−σ (2.15)

UcσU
−1 = eiσα/2 cos(β/2)eiσγ/2 cσ + σe−iσα/2 sin(β/2)eiσγ/2 c−σ (2.16)

In the projection of a product of several creation- and annihilation-operators the

integrals over α and γ select the possible combinations of spin projections and define

the relative signs between them, while the integral over β leads to the non-trivial

coefficients of the form∫ 1

−1
d(cos β) cos2(n−m)(β/2) sin2m(β/2) =

2

(n + 1)
(

n
m

) (2.17)
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These operations can be incorporated in a program without any problems, so that we

are able to generate a suitable set of linearly independent operators, which preserve

the symmetries of the Hamiltonian.

For small clusters there are only a few operators, so that we are left with a

manageable set of variational parameter for the Lanczos iteration. For the case of

the nearest neighbor operators we obtain the familiar three operators

A1 =
∑
〈i,j〉,σ

(
c̃†i,σ c̃j,σ + c̃†j,σ c̃i,σ

)
(2.18)

A2 =
∑
〈i,j〉

SiSj (2.19)

A3 =
∑
〈i,j〉

ninj (2.20)

Of course, these operators are only defined up to linear combinations of each other,

and to obtain the most general operator we have to add them with arbitrary coeffi-

cients, i.e., α0 + α1A1 + α2A2 + α3A3. The most important of these operators will

generally have a close connection to the Hamiltonian[64]

2.7 Wavefunctions

One main restriction in a variational approach is given by the types of wavefunctions

that are considered. This determines how close in energy we can approximate the

groundstate before the Lanczos iteration. However, we have found in section 2.4 that

the energy alone is not a good criterion for the properties of the groundstate. We

then prefer to use wavefunctions with a slightly less optimal energy but with a well

defined long-range behavior. The generalized Lanczos iteration will then take care of

most of the remaining correlations. The main task is then to use wavefunctions which

can be evaluated efficiently. Two of the most commonly used types of wavefunctions

are the Slater determinants and the resonant valence bond (RVB) wavefunction[65].

Neither the Slater determinant nor the RVB wavefunction will in general obey the

constraint of no double occupancy. We can enforce this with a projection as follows

|Ψ〉 = PG|Ψ0〉 =
∏
i

(1− ni,↑ni,↓)|Ψ0〉 (2.21)

where |Ψ0〉 is the original Slater determinant or RVB wavefunction. |Ψ〉 will then

already contain some correlations, i.e., it will no more be a Slater determinant or

RVB wavefunction, respectively. Furthermore |Ψ〉 will in general not be normalized

when |Ψ0〉 was. The projection will be taken care of by using an appropriate set of

basis states and we will also calculate 〈Ψ|Ψ〉 explicitly to obtain properly normalized
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results. Therefore, we only have to deal with |Ψ0〉 and we have to specify it only up

to an overall factor.

A Slater determinant is given by a set of one-particle orbitals ϕl(Ri, σ), or by

the corresponding creation operators c†l =
∑

i,σ ϕl(Ri, σ) c†i,σ. We obtain the wave-

function

|Ψ0〉 =
∏
l

c†l |0〉 (2.22)

〈(R1, σ1) , . . . , (RN , σN)|Ψ0〉 = det


ϕ1(R1, σ1) · · · ϕ1(RN , σN)

...
. . .

...
ϕN(R1, σ1) · · · ϕN(RN , σN)

(2.23)

Also the RVB wavefunctions can be written as determinants. They are char-

acterized by a function a(R↑,R↓) which specifies the strength of the valence bond

between R↑ and R↓).

|Ψ0〉 =

 ∑
R↑,R↓

a(R↑,R↓)c
†
R↑,↑c

†
R↓,↓

N/2

(2.24)

〈
R1,↑, . . . ,RN/2,↓|Ψ0

〉
= det


a(R1,↑,R1,↓) · · · a(R1,↑,RN/2,↓)

...
. . .

...
a(RN/2,↑,R1,↓) · · · a(RN/2,↑,RN/2,↓)

(2.25)

2.8 Lattices and Finite Size Effects

For all of the numerical calculation we have to choose a finite lattice. In order

to reduce boundary effects, the finite lattice is repeated periodically in all spatial

directions. These periods are described by a set of vectors with coordinates, which

are integer multiples of the lattice constant. Although these vectors can be chosen

quite general, we perform our calculation with sets, which are compatible with

the lattice symmetry. For the case of the 2 dimensional square lattice considered

in this work the available lattices are defined by the periods (n,m) and (−m, n).

Furthermore, if we want to investigate a bi-partite lattice there is an additional

constraint that n + m = even.

Fig. 2.1 shows an example of a tilted lattice. It corresponds to the choice of

(n,m) = (7, 1), which is the lattice that is mostly used in this work. The deviations

from the thermodynamic limit in the results are mainly determined by the number

of points on the lattice. With the choice of a bigger lattice, such finite size effects

can be reduced. However, the size of the Hilbert space and therefore the time

requirements for the computation grows exponentially with the number of lattice

sites. This sets an upper bound to the number of sites.
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reciprocal lattice

(π, 0)

(0, π) (π, π)

Figure 2.1: Example for a finite lattice with general boundaries. To model the
infinite lattice, the finite lattice is repeated with periods (n,m) and (−m,n). The
number of sites in the finite lattice is n2 + m2. Also shown is the reciprocal lattice
with the discrete set of k-points corresponding to the finite lattice with periodic
boundary conditions. For these figures we have chosen (n, m) = (7, 1). The dashed
line shows the Fermi surface for a tight binding model at half-filling, while the dotted
line indicates the nodes corresponding to the symmetry dx2−y2 . For the lattice shown
here non of the k points lies on the Fermi surface and only k = 0 and k = (π, π) are
on the nodes. This will lead to smaller finite-size effects in the calculations reported
in this work.
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Additional finite size effects are caused by artificial degeneracies. The Fermi sea

for a finite lattice is defined by occupying the Ne orbitals with the lowest ε(k). ε(k)

is the dispersion given by the kinetic energy and Ne is the number of electrons. Due

to the lattice symmetry there will in general be 4 k-points with the same energy ε(k)

which can each be occupied by an up- and a down-spin. Depending on the number

of electrons there may be an arbitrary choice which of the k orbitals to occupy. E.g.,

if we assume the tight binding form ε(k) = −W
4

(cos(kx) + cos(ky)) then the first

electron will go into the k = 0-orbital. Due to its spin there is a 2-fold degeneracy

of this state. The next electron will occupy the opposite spin projection in the same

orbital, which yields a non-degenerate state. Filling in the next 7 electrons again

leads to degenerate states as they can be distributed among the 4 next lowest k-

orbitals with the next lowest energy. Only the 10th electron fills this shell completely

and leads again to a non-degenerate state. Whenever there are 8l+2 electrons (with

l an integer) the l + 1 lowest shells will be closed and the Fermi sea is well defined,

while any of the other (open shell) configuration is degenerate. In general, some

variational wavefunctions will suffer from this problem and others will not. While

it is technically not difficult to construct well defined wavefunctions even for the

open shells (e.g., by choosing an appropriately symmetrized linear combination), the

degeneracy might lead to an artificially high energy and a correlated wavefunction

may lower the energy mainly by removing this degeneracy. This is strictly a finite

size effect, since in the thermodynamic limit there is no such degeneracy for any

filling. When dealing with results on finite lattices we should expect to see variations

with the number of electrons which are connected with these shell effects. If enough

fillings are available for parameters which lead to the same groundstate, then a

pattern with a period of 8 electrons will be superimposed on the results as a function

of the number of electrons. Such a pattern can often help to estimate the magnitude

of the finite size effects.

For the 50 sites lattice shown in Fig. 2.1 the half-filled case of one electron per

site corresponds to a filled shell. The dashed line indicates the Fermi energy for the

half-filled case using the tight binding form of ε(k) given above. The k-points inside

the dashed line correspond to filled orbitals of the Fermi sea.

An additional consideration for the choice of the lattice concerns the symmetry

of the wavefunction. E.g., in Fig. 2.1 the dotted line separates different sector

corresponding to the relative sign of the dx2−y2 symmetry. In the definition of

the wavefunctions, nodes and poles will appear mainly at such special symmetry

lines. E.g., this will be the case for the Fourier transform of the bond strengths

ã(k) =
∑

k exp(ik∆R)a(∆R) in the RVB pairing.

In order to avoid these symmetry related lines we can choose lattices with periods
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(n, 1) and (−1, n) with n an integer, of which the 50 sites lattice is a special case.

Such lattices tend to reduce the finite size effects.

Ideally, one would want to perform a finite size scaling using different lattice sizes.

However this is only possible for certain fillings, since not all fillings are available

for all lattice sizes. This restriction is even worse, if we want to compare closed shell

configurations. In general we have to resort to qualitative estimates for when the

finite size effects become negligible.
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Chapter 3

Implementation of the Algorithm

In this chapter we would like to present some of the necessary details to obtain

the results of this thesis. Although this information does not contribute to the

understanding of the physics involved, it is essential when one is to estimate the

validity of the results or their possible improvements.

3.1 Monte Carlo Sampling

For the strongly correlated fermion systems, which we are investigating, there are no

analytic formulas available for the variational expectation values, except for some

special cases like the Néel state. In general, we have to use a complete set of states

and perform the sum over these states explicitly. Due to the constraint of no double

occupancy of any one site, the most simple complete set of states is the configuration

basis. Each member of this basis set is determined by the positions of all the up- and

down-spin electrons. If we want to evaluate the expectation value of the Hamiltonian

H for a given wavefunction |Ψ〉 we obtain (where R labels the configurations)

〈Ψ|H|Ψ〉 =
∑
R,R′
〈Ψ|R〉〈R|H|R′〉〈R′|Ψ〉 (3.1)

If the wavefunction is not normalized we also have to evaluate 〈Ψ|Ψ〉 to obtain the

energy. The number of terms 〈R|Ψ〉 that appear in this sum is equal to the dimension

of the Hilbert space. Even for moderate system sizes it becomes impractical to

perform this calculation. However, we can estimate the sum by taking a subset

of the terms at random (i.e., “Monte Carlo sampling”). This subset serves as a

representative sample which lets us extrapolate to the whole sum. This approach

will succeed, if the individual terms in the sum show only little variation among

each other. For a variational wavefunction |Ψ〉, which is close the the groundstate,

we know H|Ψ〉 ≈ E0|Ψ〉. The ratio 〈R|H|Ψ〉/〈R|Ψ〉 shows only little dependence

on R and is well suited for a Monte Carlo evaluation.
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In general, we want to evaluate a sum

F =
∑
x

f(x)P (x) (3.2)

where P (x) is a probability distribution, i.e., any function of x with P (x) ≥ 0 and∑
x P (x) = 1. We generate a sample X of values x drawn with the probability P (x).

This leads to an estimate for the value F

F ≈ F̃ =
1

NX

∑
x∈X

f(x) (3.3)

where NX is the number of elements in the sample X. The Central Limit Theo-

rem ensures that for big enough samples the values F̃ are normal-distributed and

converge within statistical error towards F . We obtain the statistical error by com-

bining the estimates from independent samples Xi. The fact that the F̃ follow a

normal distribution allows one to perform various statistical tests[66]. Such tests

are an invaluable tool during program development to uncover errors.

3.2 Importance Sampling

The choice of P (x) in Eq. (3.2) is largely arbitrary. Any factorization will produce

the same F and the only restriction is that P (x) cannot be zero where the product

f(x)P (x) should be finite. If we choose P (x) such that f(x) is almost constant,

then the Monte Carlo sampling will converge rapidly. Finding an optimal choice for

P (x) is known as importance sampling.

For Eq. 3.1 there is a well-known good choice with P (R) = |〈R|Ψ〉|2/〈Ψ|Ψ〉.
Here, P (R) can become zero, but only when the whole term in the sum is zero.

Those terms don’t contribute to the sum and can be neglected. The expectation

value for the energy is then

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=
∑
R

〈R|H|Ψ〉
〈R|Ψ〉

P (R)

P (R) =
|〈R|Ψ〉|2

〈Ψ|Ψ〉

(3.4)

For the more general expectation values like 〈Ψ|AiHAj|Ψ〉 we have to use a

different probability distribution, e.g., we can use

〈Ψ|AiHAj|Ψ〉 =
∑
R

〈Ψ|Ai|R〉〈R|HAj|Ψ〉
Pi(R)

Pi(R)

Pi(R) = CPi
|〈R|Ai|Ψ〉|2

(3.5)

The constant CPi
is determined by the normalization of Pi.
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To generate samples drawn from a probability distribution P (R) we use the

Metropolis algorithm[67]. Starting from a configuration R a new configuration R′ is

accepted if P (R′) > P (R). Otherwise it is only accepted with a probability equal

to P (R′)/P (R). For long enough sequences these R are distributed according to

P (R). In this scheme only ratios of the probabilities need to be calculated and P

can be given up to an arbitrary constant factor.

When we need to evaluate several expectation values, then the above choices

of Pi force us to sample them separately. Many terms in the sum are however

the same between different expectation values. We can make the algorithm more

efficient by sampling all the expectation values in the same run. However, then

we have to use only a single probability distribution P (R). We have to ensure that

P (R) samples the big contributions of all expectation values. This can be done with

P (R) =
∑

i Pi(R). With this compromise the rate of convergence is slower for the

individual sums, but due to the more efficient evaluation of the various terms the

overall time required to obtain the same accuracy will be reduced. This scheme has

been used before to obtain the variance of the Hamiltonian along with the energy

(e.g., see Gros[54] as follows

σ2
H =

〈
H2
〉
− 〈H〉2

〈Ψ|H2|Ψ〉 =
∑
R

〈Ψ|H|R〉〈R|H|Ψ〉

=
∑
R

|〈R|H|Ψ〉|2

P (R)
P (R)

P (R) =
|〈R|Ψ〉|2

〈Ψ|Ψ〉

(3.6)

While this is a fast way to obtain the variance as a byproduct, it also introduces a

systematic error, since P is only appropriate for 〈H〉. 〈Ψ|H|R〉〈R|H|Ψ〉 need not be

zero where 〈R|Ψ〉 and therefore P (R) vanishes. Since all of the terms in the sum are

positive, σH will be underestimated. Also close to a node of 〈R|Ψ〉, where P (R) is

small, the configuration space will not be sampled very often, even though — due to

the small denominator — the corresponding term may be considerably off from the

average and will therefore contribute substantially to the sum. All of this leads to an

estimate for the variance which is smaller than the true value, and this discrepancy

will not show up in the statistical error. We can test this systematic error by

comparing with calculations done with a flat probability distribution P (R) = const,

which takes all terms into account with the same weight. From calculations for the

t-J model on a system of 16 sites with 8 holes we conclude that the systematic error
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is of the order of a few percent.1 For bigger systems, where the slow convergence

with the flat probability distribution forces us to use importance sampling, we can

expect the nodes to become less important. Furthermore, the combined P used when

evaluating many expectation values in the same run will counteract the systematic

error. To get a quick qualitative estimate for the variance it is therefore reasonable

to use Eq. (3.6).

3.3 Statistical Errors

As mentioned above the results obtained by Monte Carlo sampling are accurate only

within a statistical error. This statistical error is also obtained from the same Monte

Carlo data. In fact, the Monte Carlo data is analyzed analogously to experimental

data.

The Metropolis algorithm generates a walk through configuration space. In

general points along this walk which are close together are statistically dependent.

A naive estimate would therefore lead to a statistical error which is too small. The

statistical dependence can be measured with the autocorrelation function. The

correlation between the data points will fall off exponentially with their distance

and the statistical error can be corrected for. Another effect which has to be taken

into account is that a Metropolis walk starting with an arbitrary configuration will

not generate representative configurations for the first few steps.2 To get reliable

results we have to wait for a number of “warmup” steps before we start sampling.

In practice we calculate the statistical errors from completely independent runs

using different random number generator seeds. This also allows us to perform

the runs in parallel on different CPUs. One such run will then correspond to one

“measurement” of the observables. If the runs have different length, this has to

be taken into account by appropriate weights for the corresponding measurements.

The number of terms in the Monte Carlo average can be used as the weight of the

measurement.

Since we evaluate several expectation values in the same run, we have to consider

the statistical dependence between different expectation values. This statistical

dependence should not be confused with the statistical dependence mentioned before

of one expectation value within a Monte Carlo run. The latter depends on the

method to produce the random walks and is zero between different measurements,

while the former is intrinsic to the expectation values. Let us label our expectation

values with (x1, . . . , xN). We perform M measurements which lead to the Monte

1The energy converges to the same value with the flat probability distribution or with impor-
tance sampling as expected for this P (R).

2This is much like a thermodynamic system starting away from equilibrium.
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Carlo averages (x
(i)
1 , . . . , x

(i)
N ), i ∈ {1, . . . ,M}. Let pi be the weight of measurement

i. If we then want to calculate a quantity A = A(x1, . . . , xN), which depends on the

observables xn we have

xn =

∑
i pix

(i)
n∑

i pi

A = A(x1, . . . , xN)

s2
A

=
1

M − 1

1∑
i pi

∑
i

pi

(∑
n

∂A

∂xn

(x(i)
n − xn)

)2

=
∑
n,n′

(
∂A

∂xn

)(
∂A

∂xn′

)
Cov(xn, xn′)

Cov(xn, xn′) =
1

M − 1

∑
i pi(x

(i)
n − xn)(x

(i)
n′ − xn′)∑

i pi

(3.7)

A result obtained by Monte Carlo is then quoted as A± sA, where sA corresponds

to one standard deviation.

This scheme allows us to analyze the data separately from the Monte Carlo

sampling. E.g., we can investigate the t-J model for different J/t from the same set

of data without losing any accuracy. All the information about the statistical error

is contained in the covariance matrix Cov(xn, xn′).

For further information we refer to Numerical Recipes[57] or the ETH lecture

notes by Gränicher[68]. These references also describe some statistical tests, which

can be used to check whether all the statistical dependence has been taken care of

properly. Such tests are useful to uncover some types of bugs in a program during

program development.

3.4 Determinant Updates

Calculating the overlap of a RVB- or a Hartree-Fock wavefunction with a configura-

tion involves the evaluation of a determinant. Many of the configurations are similar

to each other, in that they have only a few electrons exchanged or moved to empty

sites. The corresponding determinants differ only in a few rows and columns for an

RVB wavefunction or columns only in the case of a Hartree-Fock wavefunction. E.g.,

the Hamiltonians considered in this thesis, when applied to a configuration, will gen-

erate such a set of similar configurations. The corresponding set of determinants can

be evaluated more efficiently than any one of them separately. Whereas the number

of arithmetic operation needed to evaluate an N ×N determinant scales as N3, the

ratio of two determinants takes on the order of N operations if they differ only by

a few rows (or only by a few columns) and on the order of N2 operations if a few
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rows and columns are changed. For one of the configurations the determinant and

the inverse of the matrix have to be calculated beforehand. This, of course, requires

again of the order of N3 operations, but it has to be done only once for the whole

set of configurations. Furthermore, the inverse for any one of the other matrices

require O(N2) operations. In the random walk we can string together updates of

determinants and inverses where each step requires O(N2) instead of the O(N3) op-

erations. In their seminal paper Ceperley et al.[52] introduced this technique, which

made variational Monte Carlo calculations feasible for fermions. They provide an

explicitly formula for the determinant- and inverse-updates for one changed row (or

column). If many rows and/or columns are changed, we can update by changing

each of these rows and columns in turn. However, for configurations that don’t lie

on the way of the random walk (i.e., for the sampled terms in the evaluation of

the expectation values) we don’t need the new inverse nor any of the intermediate

ones. It is then possible to combine all the updates, which reduces the operation

count for the determinant update from O(N2) to the above mentioned O(N) for

rows (or columns) only. For changed rows and columns the determinant update still

requires O(N2) operations, but there is a factor of at least 2 fewer operations needed

compared with the inverse update.

In the following we give the for determinant update of M rows on one hand and

of M rows and P columns on the other hand in a N ×N matrix. We denote the old

matrix with [Dold] and the new matrix with [Dnew]. The inverse of the old matrix is

[D−1
old]. The matrix elements are written as [Dold]ij and analogously for the others.

The indices for the changed rows are i1, i2, . . . , iM and if also columns are changed

we use the indices j1, j2, . . . , jP . For all other indices we have [Dold]ij = [Dnew]ij.

Row update:

qii′ =
N∑

k=1

[Dnew]ik[D
−1
old]ki′

for i, i′ ∈ {i1, i2, . . . , iM}

Q = det


qi1i1 · · · qi1iM

...
. . .

...
qiM i1 · · · qiM iM


det [Dnew] = Q · det [Dold]

(3.8)
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Row and column update:

sj,j′ =
N∑

l=1

[D−1
old]j,l[Dnew]lj′

for j ∈ {1, 2, . . . , N}, j′ ∈ {j1, j2, . . . , jP}

ri,j =
N∑

k=1

[Dnew]ikskj

for i ∈ {i1, i2, . . . , iM}, j ∈ {j1, j2, . . . , jP}

qii′ =
N∑

k=1

[Dnew]ik[D
−1
old]ki′

for i, i′ ∈ {i1, i2, . . . , iM}

Q = det


qi1i1 · · · qi1iM

...
. . .

...
qiM i1 · · · qiM iM



Sjαjβ
= Q−1 det


sjαjβ

[D−1
old]jαj1 · · · [D−1

old]jαjM

ri1jβ
− [Dnew]i1jβ

qi1i1 · · · qi1iM
...

...
. . .

...
riM jβ

− [Dnew]iM jβ
qiM i1 · · · qiM iM


for jα, jβ ∈ {j1, j2, . . . , jP}

S = det


Sj1j1 · · · Sj1jP

...
. . .

...
SjP j1 · · · SjP jP


det [Dnew] = S ·Q · det [Dold]

(3.9)

With the interchange of rows and columns we obtain a complementary set of

equations, which can be used to reduce the operation count depending on how

many rows and columns are changed.

3.5 Efficient Reuse of Intermediate Results

Related to the last section there is another trick we can use to improve the per-

formance of the program. Since we are sampling many expectation values at the

same time and also due to the types of expectation values involved (i.e., products of

operators, which, e.g., may hop an electron back and forth) we are generating the

almost every configuration many times. We can make use of this fact in two ways:

(1) we generate the configurations first and calculate the overlaps for every config-
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uration once. This involves a considerable overhead for bookkeeping. We need to

keep track where each configuration contributes. (2) we can store the overlaps with

configurations already encountered in a table. For each new configuration we first

consult the table to see whether there is already an entry. This second approach is

considerably easier to implement, although the first might be slightly less demand-

ing on memory requirements. The main point with using a table is to keep the time

to access an element smaller than the time to evaluate the overlap. This is achieved

by defining an order relation between any two configurations. The table can then

be stored as a sorted list, or more efficiently as a binary tree. We find that using a

binary tree reduces the access time considerably when the number of entries in the

table becomes large. Another limitation is the memory used to store all the entries

in the table. Even if a Monte Carlo run only generates a small fraction of all the

configurations it is impractical or even impossible to store all configuration3 of one

run. During the evaluation of the sampled terms the same configurations appear a

few times shortly after each other and then they are almost never referenced any-

more. This depends on the order in which the operators are evaluated. If we clear

the table at the right moments during the evaluation of the expectation values we

can reduce the memory consumption.4 For the cases we considered in this work we

were able to reduce the number of times we had to evaluate an overlap by a factor

of 5 to 10.

The essential point of this section is, that an algorithmic improvement like the

one sketched here, typically leads to the most significant performance improvement.

In this case it makes the method of the generalized Lanczos operators computation-

ally feasible.5

3.6 Some Implementation Details

Every Monte Carlo method uses a random number generator. If this generator is

of bad quality, the results from the Monte Carlo program might be questionable.

Some of the random number generators provided in the standard libraries are known

to be of poor quality. Furthermore, they are different between different machines,

so that tests of the program could not be repeated in exactly the same way on a

new machine. In this work we used the implementation “ran1” from the Numerical

3The dimension of the Hilbert space for the 50 sites lattices with a few holes considered in this
work is on the order of 1018 . . . 1022.

4This will also reduce the access time due to the smaller tables.
5In the standard Variational Monte Carlo calculations there are much fewer operators involved

and the generated configurations can in general be organized quite trivially so that each overlap
has to be evaluated only once.
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Recipes in C[57], first edition,6 which is expected to be of good quality and which

can be used on any machine as the source code is available. Our results are therefore

at most valid to the extent that “ran1” shows no statistical correlations. The second

edition of Numerical Recipes discusses the possibility to use “sub-random” instead of

“(pseudo-)random” numbers to speed up the convergence from the typical O(N1/2)

one gets from a Monte Carlo algorithm. For our case this would involve finding a

walk through configuration space that would cover more and more of configuration

space when the number of configurations get bigger without clustering in any region.

Finding such a walk is non-trivial as it depends on the structure of configuration

space. Also “stratified sampling” instead of or in addition to importance sampling

depends on how to divide up configuration space in order to make use of correla-

tions. In this work we have not attempted to use such schemes. Although, such

schemes may be possible for the lattices considered here, they will in general be

more advantageous in continuous systems.

Except for the evaluation of the sampled terms in each step the order of the

instructions in a Monte Carlo program cannot be predicted at the time the pro-

gram is written. Consequently, a typical Monte Carlo program will vectorize only

poorly. However, many runs starting with different random seeds can be performed

in parallel. The runs are completely independent of each other and use relatively

little memory. These are ideal condition for using a parallel computer. In this work

we used a network of 30 workstations with a total computing power on the order

of 80 MFlops. The runs were automatically distributed by a batch system which

attempted to make the most efficient use of the available CPUs[69].

As with any program a Monte Carlo program needs to be tested. The usual kind

of checks, i.e., running a number of independently verified test cases, will uncover

some bugs. However, a program based on a random number generator will neces-

sarily generate results with statistical scatter. A subtle bug, like missing one out of

many iterations of a loop (usually the first or the last iteration), may produce an

error of the same order or smaller than the statistical scatter. It is therefore essential

to design the implementation in a modular way, where each module can be tested

independently. This is especially important for the performance improvements dis-

cussed in this chapter, which introduce another level of complexity. In this work we

use the object-oriented programming language C++ for the implementation[70].

6Some of the random number generators in Numerical Recipes were changed in the second
edition. This includes “ran1”.
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Chapter 4

The Heisenberg Model

Even though the Heisenberg model is one of the oldest and simplest non-trivial

models in many particle quantum mechanics, only a few results are rigorously known.

The model is defined by the Hamiltonian

H = J
∑
〈i,j〉

Si · Sj (4.1)

The interaction is between pairs of spins-1
2

connected via nearest-neighbor bonds

with J > 0. The model can also be generalized to higher spins S. For large

enough S the spins behave classically and the groundstate is antiferromagnetically

ordered. It should be noted that the ferromagnetic case with J < 0 is very different

from the antiferromagnetic case. For ferromagnetic coupling the groundstate is

degenerate and corresponds to the subspace of maximal spin. The excited states are

well described by spin wave theory.

For antiferromagnetic coupling the fully antiferromagnetically ordered Néel state

is not an eigenstate of the Hamiltonian and therefore not the groundstate. It is not a

priori clear whether the quantum fluctuations would completely destroy long-range

order. In one dimension the Bethe ansatz[71] solves the spin-1
2

antiferromagnetic

Heisenberg chain exactly. It shows that the groundstate of the Heisenberg model

has no antiferromagnetic long-range order in one dimension. In three dimensions

it is known that for all spins[72, 73] there is antiferromagnetic long-range order

below a finite critical temperature and hence in the groundstate. For the two-

dimensional case we know that there is no long-range order at finite temperature[4].

A finite long-range order in the groundstate (i.e., at T = 0) has only be shown for

S ≥ 1[74] and for spin-1
2

with enough anisotropy[75, 76]. To date no rigorous result

is known, which would prove the existence or non-existence of antiferromagnetic

long-range order of the isotropic spin-1
2

antiferromagnetic Heisenberg model on a

two-dimensional square lattice. One of the few exact known results is given by the

Marshall-sign rule, which implies a singlet groundstate on a bipartite lattice[77, 78].
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Despite the lack of rigorous results the evidence from numerical calculations

ranging from exact diagonalization[79, 80, 81] and Green’s function Monte Carlo[82,

83] to spin wave theory[84, 85, 86] and series expansions[87, 88, 89, 90] clearly show

finite long-range order in the groundstate which is reduced by 40% compared with

the Néel state. Furthermore, variational Monte Carlo studies favor antiferromagnetic

long-range order, although they are less reliable in estimating the magnitude of the

order[91, 92, 93, 94, 95].

As the spin-1
2

Heisenberg antiferromagnet naturally describes the CuO2 planes

of the undoped parent compounds of the High Tc materials, there has been renewed

interest in recent years. An overview over the presently known results can be found

in the review by Manousakis[96].

4.1 The Heisenberg Model as a Test Case

The spin-1
2

antiferromagnetic Heisenberg model can serve as an ideal test case for

our method. Apart from the fermionic description, where an electron with spin 1
2

is

placed at each lattice site, there is an equivalent bosonic description. The bosonic

nature of the problem allows the use of quantum Monte Carlo techniques without

the fermion sign problem. We can then compare our results using the fermionic

description to the numbers obtained from the equivalent bosonic system. While

for the Heisenberg model the fermionic description is unnecessary, other fermionic

problems cannot be mapped to an equivalent bosonic model. Before we use our

method on such a system we want to test it for a case where reliable results obtained

independently are available as is the case for the Heisenberg model.

The bosonic description starts from the completely antiferromagnetically ordered

Néel state. The spin-flip operators S+
i and S−

i are associated with the appropriate

creation and annihilation operator a†i and ai on each sublattice. These creation

and annihilation operators then observe the usual commutation relations for bosons

with the additional constraint that there can be no more than one boson at each

site, i.e., they are hard-core bosons. For general spin S the bosons are defined by

a generalization of the Holstein-Primakoff transformation[97] for antiferromagnets

which leads to the spin-wave theory for antiferromagnets[84] . An overview over the

Holstein-Primakoff transformation and the resulting spin-wave theory can also be

found in Manousakis[96].

The most reliable values for the groundstate energy can be obtained by quantum

Monte Carlo methods. Although they use different projection and guiding functions

in their Green’s function Monte Carlo calculations, Trivedi et al.[82] and Carlson[83]

obtain both a value of−0.6692±0.0002 per site, or−0.3346±0.0001 per bond. These
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values compare well to other methods like spin-wave theory or series expansion[90].

Due to finite size scaling, the groundstate energy for the 50 sites lattice that we will

investigate below has a lower value of ≈ −0.3375 per bond[82].

The antiferromagnetic long-range order is characterized by the staggered mag-

netization m† = (1/N)
∑

r (−1)rx+ry 〈Sz
r 〉 measured with a small staggered magnetic

field h(r) = (−1)rx+ryh. To obtain the staggered magnetization of the groundstate,

the thermodynamic limit has to be performed before letting h → 0. This difficulty

can be avoided by extracting m† from the staggered spin-spin correlation.

Cspin(R) = (−1)Rx+Ry
1

N

∑
r

〈Sr · Sr+R〉 (4.2)

m†2 = Cspin(∞) ≈ Cspin(Rmax) (4.3)

where Rmax is the longest possible distance in a finite lattice with periodic boundary

conditions.

The staggered magnetization is more difficult to obtain reliably from Green’s

function Monte Carlo. Since it does not commute with the Hamiltonian, its value

is more sensitive to the choice of the guiding wavefunction. Trivedi et al.[82] report

a value of m† = 0.31 ± 0.02 while the value of Carlson[83] is 0.34 ± 0.01. This

indicates a value of the staggered magnetization, which is reduced by 30% . . . 40%

with respect to the Néel state. While exact diagonalzation tends to favor a lower

value for m†[80], the series expansions agree quite well with this value[89, 90].

The staggered magnetization m† does not commute with the Hamiltonian. It

is therefore not a conserved quantity and the groundstate is a mixture of states

corresponding to different m†. It is then possible to find variational states with low

energy, which have zero staggered magnetization. Liang et al.[98] have found such a

state using a resonant valence bond wavefunction. This shows that the energy alone

is not a good enough criterion to obtain information about other properties of the

groundstate using purely variational approaches.

4.2 Variational Monte Carlo with Lanczos Itera-

tions

Standard variational Monte Carlo has been used successfully to model the antifer-

romagnetic correlations in the t-J model (e.g., see Yokoyama and Shiba[92], Chen

et al.[44], or Gros[54]). We will use the same wavefunction as Gros with the same

parameters as our starting point for the Lanczos iterations1. This wavefunction com-

bines spin-density wave orbitals into a d-wave BCS-type condensate. This leads to

1Results of this chapter have also been published in Ref. [99]
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an RVB ansatz which mixes singlet and triplet bonds. The wavefunction is defined

as[54, 44]

|Ψ0(∆AF, ∆SC)〉 = PGPN
∏

k∈BZ (uk + vkd
†
k,↑d

†
−k,↓)|0〉(

d†k,σ

d†k+Q,σ

)
=

(
ak σbk
−σbk ak

)(
c†k,σ

c†k+Q,σ

)

ak = cos(θk), bk = sin(θk), cos(2θk) = εk/
√

ε2
k + ∆2

AF

vk/uk = ∆k/
(
εk +

√
ε2
k + ∆2

k

)
∆k = ∆SC(cos(kx)− cos(ky))

εk = −2(cos(kx) + cos(ky))

(4.4)

where PG and PN are the Gutzwiller and N -particle projectors, respectively. The

operators d†k,σ create an electron in a spin-density wave orbital controlled by ∆AF.

The Cooper-pairs are condensed with a d-wave symmetry controlled by the gap ∆SC.

For other symmetries we have to substitute for the appropriate gap function ∆k.

When the spin-density wave gap ∆AF is zero, the wavefunction is a singlet RVB

state and has no long-range order, i.e., the staggered magnetization vanishes in

the thermodynamic limit. Any finite value of ∆AF will lead to a finite staggered

magnetization but will also mix in some triplet and higher excited spin states. It

should be noted that also for ∆AF = 0 long-range bonds still have a considerable

weight, so that for the finite size lattice considered here there is a considerable

antiferromagnetic correlation even at the largest distance available.

Since the groundstate is known to be a singlet[77, 78], we would ideally want to

have this state projected onto the singlet subspace (for finite ∆AF). However, this

would increase the computing time. In the simplest case, for a Slater determinant,

there is a factor of N + 1 increase in computing time, where N is the number

of spins. For a more general wavefunction, like the RVB ansatz given above, the

number of term generated by the singlet projection operator rises exponentially with

the number of spins. Therefore we do not attempt to perform the singlet projection

for the wavefunction (4.4). Although, we can expect the influence of the triplet

and higher excited spin states to be negligible for small enough ∆AF we have to be

careful in the interpretation of the results obtained with a finite ∆AF.

Gros has shown that a lower energy is obtain by choosing a finite spin-density

wave gap ∆AF. This is consistent with a groundstate with finite staggered mag-

netization. Furthermore Gros has shown that for this state the variance of the

Hamiltonian is smallest for the optimal energy. This is a strong indication that the
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Figure 4.1: Energy expectation values of the Heisenberg Hamiltonian normalized by
the number of bonds on a 50 sites lattice. The energies are shown as a function of
the variational parameter ∆AF while ∆SC was held fixed at 0.5. The upper curve
(•) shows the energy as obtained by standard VMC, in agreement with Gros, while
the lower curve (◦) shows the improved energies after one Lanczos iteration. For the
case of ∆AF = 0 a second Lanczos step has been carried out. The result is shown
as �. The dashed line indicates the expected ground state energy as reported from
GFMC calculations by Trivedi et al. and Carlson.

wavefunction closely models the groundstate.

We can now perform Lanczos iterations on this wavefunction, which will yield

variational states with a lower energy. The energy obtained in this way is shown

in Fig. 4.1. We fixed the d-wave gap at ∆SC = 0.5, while the spin-wave gap was

varied in an interval ∆AF = 0.0 . . . 0.5. The points indicated with • correspond to

the values obtained before the Lanczos iterations. They are in agreement with the

results from Gros. After one Lanczos iteration we obtain the values denoted by ◦.
We can see that the relative improvement is biggest for the singlet state at ∆AF = 0.

For this state we carried out a second Lanczos iteration with the result shown as

�. The values of the energy for the singlet variational wavefunction with ∆SC = 0.5

and ∆AF = 0 are -0.32000(6) before, -0.33348(12) after the first, and -0.33625(89)

after the second Lanczos iteration. These are energies per bond measured in units

of the coupling constant J . The value of the second Lanczos iteration is the lowest

value obtained in this work and is lower than other reported variational bounds[96].

It is a well known fact in exact diagonalization that taking symmetry into consid-
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eration leads to faster convergence of the Lanczos method. For a well enough chosen

initial wavefunction one needs about as many Lanczos steps to achieve convergence

as there are eigenstates with non-negligible overlap with the initial wavefunction. Af-

ter that many steps, the constructed set of states essentially spans the same Hilbert

space as do these eigenstates. If the groundstate has a considerably smaller weight

than some other eigenstates, the Lanczos algorithm will first try to converge to the

lowest of those excited states, before the groundstate can take over. Projecting

onto a symmetry of the groundstate will therefore reduce the dimension of the effec-

tive Hilbert space and at the same time lower the probability of having an excited

state screening the groundstate. This problem will even be more prominent in our

method, as we can do only a few iterations. Using the variance of the Hamiltonian

we can tell whether the current Lanczos step brought us closer to an eigenstate or

merely shifted the weight from higher to lower energy eigenstates. While in the first

case the variance is reduced, it may get bigger in the second case. As the sequence

approaches the groundstate, the variance converges to zero, as discussed in section

2.1. For our trial wavefunctions we observe that σH =
〈
(H− 〈H〉)2

〉1/2
is reduced

by a factor of about 2 in one Lanczos step. The numerical values for the initial

wavefunction with ∆SC = 0.5 and ∆AF = 0.0 again measured per bond in units of J

are 0.02725(22) before, 0.01463(98) after the first, and 0.00844(772) after the second

Lanczos iteration.

The important effect that the symmetry of the initial trial wavefunction has on

convergence, is illustrated by the bigger improvement in energy as ∆AF approaches 0.

For smaller values of ∆AF the higher spin components are more and more suppressed

until ∆AF = 0 gives a pure spin singlet state. To confirm this observation, we have

also evaluated the energy expectation values for the pure d-wave state as a function

of ∆SC as well as the pure SDW state as a function of ∆AF. When we compare all

these results again with the expected groundstate energy of −0.3375J from Green’s

function Monte Carlo, we observe the spin singlet wave functions to recover between

70 and 80 % of the difference, whereas this value drops well below 50 % when ∆AF

is turned on even only to moderate values. The singlet case continues to show a big

relative improvement also for the second Lanczos iteration, as shown in Fig. 4.1.

As mentioned above, ∆AF is not a direct measure for the antiferromagnetic order.

It is merely a variational parameter, which together with ∆SC determines the spin

order. The antiferromagnetic order will extend over a considerable range depending

on ∆SC even when ∆AF = 0. After the Lanczos iteration the variational parameters

are even more meaningless, since the wavefunction is changed by the iteration. In

order to obtain some information about the spin order, one has to measure the

correlations directly. This will be shown in the next section. It is also important
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to notice that a low energy of the initial wavefunction alone is not good enough as

a criterion to find a good starting wavefunction. Choosing a wavefunction from a

sector of the Hilbert space with the right quantum numbers for the groundstate is

more important. We therefore find that although the introduction of ∆AF lowers

the energy in the standard variational Monte Carlo, it is important not to use (a

finite) ∆AF for the Lanczos iterations.

4.3 Spin Order

Additionally to the energy and variance, we can measure the spin-spin correlation

Cspin(R) = (−1)Rx+Ry 1
N

∑
r 〈Sr · Sr+R〉 of the variational wavefunction before and

after the Lanczos iteration. This will give us direct information about the spin order

and how the Lanczos iteration changes it when converging towards the groundstate.

For the singlet case of ∆SC = 0.5 and ∆AF = 0 which we have found to be the optimal

choice for the Lanczos iterations Fig. 4.2 shows the results for the z-component of

the spin-spin correlation function. We need to multiply this value by 3 to obtain the

total spin-spin correlation.2 The value for the staggered magnetization is therefore

m† = (3 |〈Sz
i Si+Rmax〉|)1/2.

The d-wave state has an antiferromagnetic order which decays as a power law.

Even though this would lead to zero staggered magnetization in the thermodynamic

limit Cspin(R) remains quite large at all distances for the 50 sites lattice considered

here. This suggests that it is the slow decay which is responsible for the low vari-

ational energy. The Lanczos iteration confirms this expectation as it enhances the

spin-spin correlation at all distances.

In the following table we compare our results with the Green’s function Monte

Carlo data by Trivedi and Ceperley[82, 100] and Carlson[83].

Trivedi and Ceperley[82] Carlson[100] Standard VMC VMC + Lanczos
0.31± 0.02 0.34± 0.01 0.29 0.34

The values from the Green’s function Monte Carlo are extrapolated to the ther-

modynamic limit. For smaller systems these values are higher. Spin-wave theory

predicts a finite size dependence of the staggered magnetization of

m†(L) = m†(∞) + µL−1 + · · · (4.5)

where L is the linear dimension. This dependence should also be reflected in the

distance dependence of Cspin(R) for the larger distances. For the 50 sites lattice

2This is only possible for a singlet state. For the general case the x- and y-components have to
be evaluated separately. Since they are non-diagonal, this would increase the overall computing
time.
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Figure 4.2: z component of the staggered spin-spin correlation as a function of
distance. Shown are the values before (•) and after (◦) the first Lanczos iteration
for a d-wave RVB state (∆SC = 0.5, ∆AF = 0, see text). The values at the largest
distance are used for an estimate of the staggered magnetization.
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Figure 4.3: Staggered magnetization as a function of inverse distance for the 50
sites lattice. Spin-wave theory predicts a linear dependence on inverse distance.
The thermodynamic limit of the staggered magnetization corresponds to the limit

1
∆R
→ 0. • are the values before and ◦ are after the Lanczos iteration.
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we show in Fig. 4.3 the same data as in Fig. 4.2 represented to reflect this distance

dependence. The 50 sites lattice does not allow a reliable extrapolation to the

thermodynamic limit. Nevertheless, the values after the Lanczos iteration is in

qualitative agreement with m† = 0.3 . . . 0.32 which is expected for the staggered

magnetization in the thermodynamic limit from other calculations[96].

4.4 Conclusions

In this chapter we have shown that the Lanczos iteration is a valuable tool to con-

struct an unbiased improvement for a given wavefunction. This will not only improve

the variational upper bound for the energy, but we can also get some information

about other observables. In particular we have shown that with the Lanczos it-

eration the staggered magnetization tends to approach the value expected for the

groundstate. It should also be noticed that these calculation were performed us-

ing the fermionic representation of the Heisenberg model. The value we obtain

for the energy is considerably better than typical values obtained for the fermionic

description[96]. This allows us to use the presented method for other fermionic

models without the limitations given by the sign problem.

These calculations also show the limitations of a straightforward application

of the Lanczos method to the variational Monte Carlo approach. While the first

Lanczos iteration can easily be handled with the presently available computing power

— it could even be used for slightly larger lattices — every additional Lanczos step

leads to an exponential rise in the necessary computing time. For 50 sites we cannot

go beyond the second Lanczos step, except for some special wavefunctions like the

Vandermonde determinants in one dimension.

In the first Lanczos iteration the spin configuration on each nearest neighbor

bond are optimized (with the energy as the criterion). The second iteration will

again optimize the spin configuration on a nearest neighbor pair, but this second pair

can be in any relative position to the first one. This leads to the exponential increase

in the number of terms. However, not all relative positions of the bonds in the higher

order Lanczos steps lead to an equally important contribution in the improvement

of the energy. The lattice- and spin-symmetry determines only a few coefficients

in the terms. With generalized Lanczos operators, as discussed in section 2.4, we

can therefore improve the variational wavefunction further without the exponentially

increased time requirements. We will make use of such generalized Lanczos operators

in the investigation of the t-J model, where the Hilbert spaces are considerably

larger.
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Chapter 5

The t-J Model

As noted in chapter 1 the t-J model is one of the simplest yet promising models to

describe the high-Tc cuprates. Various investigations have shown that the ground-

state can exhibit different phases depending on the two parameters hole density δ

and coupling strength J/t.1 The T = 0 phase diagram provides a convenient way to

represent the regions in parameter space where a particular phase is realized in the

groundstate. Apart from specific predictions for an experiment (like susceptibility

measurements or photoemission), considerable effort has been devoted the determi-

nation of this phase diagram. A few phases have been successfully identified and

are summarized in the review by Dagotto[5] as shown in Fig. 5.1.

The phase separation at large J is well established. After being conjectured by

Emery et al.[32] from exact diagonalizations of a 4× 4 cluster, the phase separation

boundary was then determined from high-temperature expansion directly for the

thermodynamic limit by Putikka et al.[34]. It is still unclear which is the lower

critical value of J for which phase separation occurs (in the region of small δ). While

Emery et al. estimated that phase separation is possible for any value of J whenever

δ is small enough, the high-temperature expansion clearly showed a finite critical

value Jc below which there is no phase separation. Recently, Prelovšek and Zotos[36]

investigated the arrangement of the holes in more detail using finite size clusters.

They find that 4 holes bind into two well separated pairs for J > Jc ∼ 0.2t. Only

at couplings of J > Js ∼ 1.5t they find that the pairs attract each other. However,

even then they do not form a compact cluster. Prelovšek and Zotos find that the 4

holes arrange predominantly on a line in the (1, 0) direction. They argue that in the

thermodynamic limit this will lead to domain walls and consequently to the existence

of a so-called “striped phase”. This striped phase would be an incommensurate

charge density wave (CDW) and spin density wave (SDW) structure. Only at much

larger couplings (J > J∗
s ∼ 2.5t) they find that the holes form a compact cluster,

1Since J < t is expected for the cuprates, energies are conveniently measured in units of t, i.e.,
the kinetic energy.
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Figure 5.1: Phase diagram as compiled by Dagotto. AF denotes antiferromagnetism,
FM ferromagnetism, and FL indicates the region of a Fermi liquid at low electron
density. The different phases are discussed in the text.

which one would expect for the phase separated state. These studies indicate that

the transitions from the homogeneous to the phase separated state is more involved

than what the earlier investigations assumed.

Experimentally, evidence for phase separation has been found in the oxygen en-

hanced compound La2CuO4+δ[101, 102, 103]. However, it is not clear how much of

this effect is due to the mobile ions present in the material. It is then quationable

whether the t-J model still provides an accurate description for such a material.

Other energies may become comparably important as the nearest neighbor interac-

tions between the electrons. For other compounds no signs of phase separation have

been observed to date.

The half filled case (δ = 0) corresponds to the Heisenberg antiferromagnet, where

long-range antiferromagnetic order is expected. For finite doping one can expect

the antiferromagnetic order to persist to some extent (denoted by AF in the phase

diagram Fig. 5.1). This is especially true for the phase separated region where one of

the phases corresponds to the half filled case. Also for stripped phases one expects

the spins between the domain walls to align antiferromagnetically. This may restrict

the antiferromagnetic order to be short-range and lead to incommensurate order. It

is unclear how far the antiferromagnetism extends into the region of finite doping and

how relevant it is to the superconducting state. Nevertheless, antiferromagnetically

correlated spins are successfully used to explain experiments related to magnetic

properties[104].
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For low values of J < 0.1t high-temperature expansion[30] and exact diagonaliza-

tion[31] have found a region of ferromagnetic correlations shown as FM in the phase

diagram Fig. 5.1. Although this region is fairly well established, the parameters in

the cuprates are most likely outside of its range.

The regions in the phase diagram indicated by “superconductivity” and “bind-

ing” have the biggest uncertainties. The boundaries for these regions are qualitative

estimates mainly based on calculations on a 4× 4 cluster[40]. The only strong sig-

nal for superconducting correlations in such a small system is obtained for quarter

filling where enough charge carriers are present to form a condensate. The differ-

ence between “binding” and “superconductivity” is then only a qualitative estimate

indicative of the strength of the static structure factor corresponding to the d-wave

pair-pair correlation function. A recent investigation of the anomalous Green’s func-

tion by Ohta et al.[41] including calculations up to an 18 sites cluster has also shown

a finite d-wave gap which they estimated to be proportional to J (i.e., they don’t

find a critical J below which there is no superconductivity). For calculations on such

small clusters one has to keep in mind that the shell effects are considerable.2 As

shown in section 2.8 for a finite lattice there are only a finite number of correspond-

ing k-points in the Brioullin zone of the reciprocal lattice. Due to the symmetry 4

of the k orbitals will be degenerate except for points like k = 0 which lie on special

symmetry lines. For fillings where such a set of 4 k orbitals is not completely occu-

pied or empty this leads to a degeneracy. Correlations like superconductivity might

lower the energy in order to remove the degeneracy even when this is not the case

in the thermodynamic limit. One should therefore expect variations of the results

with the number of electrons with a period of 8.

Strong support for superconductivity also comes from variational calculations.

Typically, these calculations tried to estimate the relative stability of antiferromag-

netic versus superconducting order[44, 27, 45]. The variational Monte Carlo method

allows larger systems to be investigated and the results therefore have more relevance

for the thermodynamic limit3 than the small systems used for exact diagonalization

mentioned above.

As can be seen in the phase diagram Fig. 5.1, many different phases compete

in the region of parameters relevant to the cuprates (δ < 0.5, J/t ≈ 0.3 . . . 0.4).

This delicate balance between various instabilities may explain in part why so few

reliable results are available. It also points to a problem with variational approaches.

The bias introduced by the choice of the wavefunction cannot easily account for the

2Shell effects are also considerable for bigger lattices. However, for such small systems there is
only one closed shell configuration with 10 electrons.

3This is especially true for the wavefunctions considered, which scale well with the system size
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small differences in energy of the various groundstates, which are possible. In what

follows we will eliminate much of this bias using the generalized Lanczos operators

introduced in section 2.6.

5.1 Energy and Variance

The most important quantities in a variational calculation are the energy and the

variance[54] as discussed in section 2.1. Using this criterion with the generalized

Lanczos operators we obtain an improved upper bound for the groundstate energy.

Additionally we can compare the variances before and after applying the generalized

Lanczos operators. If the variance increases for a Lanczos iteration then the starting

wavefunction was closer to an excited eigenstate and the iteration redistributed the

weight from higher to lower energies. This allows us to judge the quality of the

starting wavefunction to some extent.4

The t-J Hamiltonian was given in Eq. 1.2. The variational wavefunctions cor-

respond to a condensate of d-wave Cooper-pairs with a short correlation length as

follows
|Ψ0(D, µ)〉 = PGPN

∏
k∈BZ (uk + vkc

†
k,↑c

†
−k,↓)|0〉

vk/uk = ∆k/
(
εk +

√
ε2
k + ∆2

k

)
∆k = D(cos(kx)− cos(ky))

εk = −2t(cos(kx) + cos(ky))− µ

(5.1)

This wavefunction was also considered by Li et al.[45] where they investigated various

symmetries for ∆k. Chen et al.[44] and Giamarchi and Lhuillier[27] also included

some long-range antiferromagnetic order characterized by a SDW gap as in Eq. 4.4.

Because this would mix in triplet and higher excited spin states and thus lower the

symmetry, it leads to slower convergence of the Lanczos iterations as observed for the

Heisenberg case in section 4.2. Furthermore the variational calculations have found

that the SDW gap is quickly suppressed with doping. We will therefore concentrate

on the wavefunction Eq. 5.1. The variational wavefunction allows us to control the

long-range d-wave order via the gap parameter D. For the k-points where ∆k has

a node the ratio vk/uk is not well defined when εk < 0. In the thermodynamic

limit the nodes of ∆k in the Brillouin zone are negligible. The effect of these nodes

on the wavefunction accounts for much of the finite size effects. Due to the tilted

periodic boundary conditions the 50 sites lattice which we will use has only one

4We have indeed found some cases where the wavefunction had to be rejected due to the variance
criterion even though the energy would have a good value. The wavefunctions shown in the results
fulfill both criteria.
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point with ∆k = 0 (at k = 0) and is thus an optimal choice to reduce the finite size

effects (see Fig. 2.1). Since k = 0 is deep inside the Fermi sea we set vk=0 → 1 and

uk=0 → 0 which leads to a ratio vk/uk → ∞. In an actual calculation we choose a

large but finite ratio. For D → 0 the choice of this ratio has a bigger influence on

the wavefunction and the Fermi sea will be defined as the extrapolation from small

but finite values of D.5

Whereas the long-range order is fixed by construction, there is essentially no

control over the short-range behavior of the wavefunction. This is taken care of by

the generalized Lanczos operators. Here we use the most general operator which

is compatible the spin and lattice symmetry and which has the same characteristic

length scale as the Hamiltonian, i.e., it acts on nearest neighbor bonds.

A = α0 + α1

∑
<i,j>,σ

(
c̃†i,σ c̃j,σ + h.c.

)
+ α2

∑
<i,j>

Si · Sj + α3

∑
<i,j>

1

4
ninj (5.2)

5.1.1 Quarter Filling

We can test our method for the 4× 4 cluster where exact results are available[105].

In Fig. 5.2 we show the energy in units of t for quarter filling. For 16 sites this

corresponds to 8 holes, whereas for 50 sites we choose 24 holes so as to have an even

number of holes for the RVB wavefunction.

In Fig. 5.2 the line labeled “RR” denotes the energy expectation value obtained

by standard variational Monte Carlo. This energy expectation value is taken for

a wide variety of different variational gap parameters D in Eq. 5.1. For the 16

sites lattice the 8 holes corresponding to quarter filling do not lead to a closed shell

configuration. We need to choose µ = −2 in order to obtain the proper limit for the

Fermi sea. For the 50 sites lattice the 24 holes constitute a closed shell configuration,

so there is some arbitrariness in the choice of µ. It has to be above the last filled

and the first empty shell to yield the Fermi sea as a limit, i.e., −1.56 < µ < −1.

For a finite D these values are not a strict limit. We use µ = −1.3 and µ = −1.5

and find that the energy does not depend significantly on µ; as expected, the main

variational parameter is the BCS gap D. For each value of J/t we determine the

best variational energy according to the Rayleigh-Ritz principle, which leads to the

lines labeled as “RR” in Fig. 5.2.

When we allow the generalized Lanczos operator A (Eq. 5.2) to act on the

wavefunction Eq. 5.1, we have 3 additional variational parameters α1, α2, and α3.
6

Again we find the optimal variational parameters for each value of J/t and arrive at

5The limit ∆k →∞ can be performed analytically. It leads to a slightly more complicated vari-
ant of the RVB determinant of section 2.7. This increases the complexity and the time requirement
of the program, and we have not yet implemented this limit.

6α0 is determined by the normalization.

44



Quarter Filling — Energy
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Figure 5.2: Energy per site in units of t as a function of coupling constant J/t
for the t-J model at quarter filling. ERR is the energy for the standard variational
(Rayleigh-Ritz, RR) approach, whereas ERRGL shows the energy after optimizing the
short-range correlations with generalized Lanczos operators. The comparison with
the exact results for 16 sites (dotted line) shows that generalized Lanczos operators
lead to a considerable improvement. The statistical error is smaller than the line
width.
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Quarter Filling — Variance
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Figure 5.3: Variance as
a function of coupling
constant J/t. Shown
is the standard deviation
σH which is the square
root of the variance. This
value measures the width
of the energy spectrum
and indicates the quality
of the wavefunction. RR
and RRGL correspond to
the same wavefunctions
as for the energies.

the lines labeled with “RRGL” (Rayleigh-Ritz with generalized Lanczos operators).

We compare our results with the exact groundstate energies from Ref. [105] and find

that the generalized Lanczos iterations reduce the energy difference typically by a

factor of 5. This means that the local correlations account for about 80% of the

missing correlation energy. We therefore conclude that the combination of adjusting

the long-range behavior with the parameter D in the wavefunction and the short-

range behavior with the parameters αi in the generalized Lanzos operators leads to

a variational wavefunction which is a very good approximation to the groundstate.

It should be noted that this improvement is possible despite the degeneracies caused

by the open shell. For the closed shell of 24 holes on 50 sites we expect the results

to be at least of the same quality.

In Fig. 5.3we show the standard deviation σH of the Hamiltonian for the same

optimzed wavefunctions as for the energies in Fig. 5.2 before (“RR”) and after

(“RRGL”) applying the generalized Lanczos operators. The standard deviation (or

equivalently the variance σ2
H) is an indication of the quality of the wavefunction. It

measures the deviation from an eigenstate as discussed in section 2.1. As we get

closer to the groundstate we expect σH to converge to zero. Indeed we can see that

σH is reduced typically by a factor of 2. Further we note that the wavefunctions on
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the 50 sites already start with a slightly lower variance. As the standard deviations

have been divided by the number of sites to account for the finite size scaling, this

difference can be ascribed mostly to the fact that the 8 holes on 16 sites correspond

to an open shell configuration. This again confirms the expectation that the closed

shell configuration on the 50 sites lattice yields results which are at least as reliable

as those for 16 sites.

The convergence to the groundstate can be seen even more clearly when using the

relations Eqs. (2.4) and (2.5). As discussed in section 2.5 the energy should converge

linearly with the variance σ2
H towards the groundstate energy. In Fig. 5.4 we show

the energy and variance for various different variational wavefunctions and a fixed

value of J/t = 1.0. The points shown as © are obtained by standard variational

Monte Carlo, each corresponding to a different choice of the gap parameter D. For

the same wavefunctions we apply the generalized Lanczos operators Eq. (5.2) with

individually optimized αi parameters and arrive at the points shown as 3. We can

see that the points form approximately a straight line. The improved wavefunctions

clearly converge to the groundstate. This is a confirmation that the wavefunctions

not only provide a good variational upper bound to the groundstate energy but also

have a large overlap with the groundstate. This allows us to use the variational

wavefunctions to calculate properties of the groundstate other than the energy.

We would like to point out that the typical variances for the 50 sites lattice are

much smaller than those of the 16 sites lattice. To obtain the pair for 50 sites with

a variance of around 0.01(tN)2 we had to choose a gap parameter of D = 5t which

also leads to an unfavorably high energy. All other points (also those of the 16 sites

lattice) have a gap parameter D ≤ 1.0. As mentioned above this can be explained

as caused by the closed shell for the 50 sites as opposed to the open shell with the

artificial degeneracy for the 16 sites at quarter filling.

In principle, one could perform an extrapolation to zero variance in order to

obtain an estimate for the groundstate energy. However, such an extrapolation is

not well controlled, i.e., we cannot easily estimate the accuracy of such an extrapo-

lation. Qualitatively, we can already see without an explicit extrapolation that the

lowest variational state after the application of the generalized Lanczos operators is

very close to the groundstate. Using this wavefunction instead of an extrapolation

provides (a) a rigorous upper bound to the groundstate energy, and (b) allows the

investigation of other observables, since the wavefunction is well defined.

This constitutes a considerable step towards the elimination of the main objec-

tion against any variational approach. A bias introduced through an inappropriate

choice of the initial wavefunction would lead to points in the E vs. σ2 diagram

which move away from an excited eigenstate as the Lanczos iteration lowers the
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Quarter Filling — Convergence
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Figure 5.4: Energy and Variance for different variational wavefunctions before (©)
and after (3) the application of the generalized Lanczos operators. Near the ground-
state we expect these points to lie close to a straight line. The exact result for 16
sites shows the success of the method. For 50 sites we obtain an analogous result
with typically even smaller variances due to the closed shell configuration
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Hole Dopings δ = 0.16 and δ = 0.32 — Energies
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Figure 5.5: Energy per site in units of t as a function of the coupling constant J/t
for the t-J model on a 50 sites lattice. (a) 8 holes, (b) 16 holes are both closed shells
(i.e., with minimal finite size effects). RR shows the standard variational energy
(Rayleigh-Ritz) and RRGL shows the energy improved with generalized Lanczos
operators.

energy or which would show an irregular scatter if too many excited state have a

non-negligible weight. In conclusion we find that the use of the generalized Lanc-

zos operators provides a powerful unbiased tool for a systematic improvement of

variational wavefunctions.

5.1.2 Hole Dopings δ = 0.16 and δ = 0.32

The cases of 8 and 16 holes on the 50 sites lattice are investigated in analogy to the

quarter filling case. Both of these fillings correspond to closed shells for the Fermi

sea. This limit will therefore be well defined and there is no artificial degeneracy

due to finite size effects. Because these are closed shells there is again some freedom
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δ = 0.16 and δ = 0.32 — Convergence
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Figure 5.6: Test for convergence to the groundstate. The energy converges linearly
as a function of σ2 to the groundstate energy for wavefunctions which are close
to the groundstate. For both fillings δ = 0.16 (a) and δ = 0.32 (b) we find a good
convergence. The points© are obtained by standard variational Monte Carlo, while
3 are optimized using the generalized Lanczos operators.
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in the choice of µ in Eq. (5.1). To obtain the Fermi sea in the limit D → ∞ we

choose µ = −0.5 for 8 holes on 50 sites and µ = −0.9 for 16 holes on 50 sites.

Fig. 5.5 shows the energy for these two cases. Like for the case of quarter filling,

we denote by “RR” the optimal energy we obtain for the standard variational Monte

Carlo approach using the Rayleigh-Ritz principle for the wavefunction Eq. (5.1). The

systematic improvement with the generalized Lanczos operators Eq. (5.2) yields the

optimized energies labeled “RRGL”. The Lanczos iteration decreases the energy by

amounts comparable to the quarter filling case.

In order to perform a qualitativ test for the convergence to the groundstate,

we use again the variance. Fig. 5.6 shows the energy and variance for different

wavefunctions. The points© denote the values obtained for the standard variational

wavefunctions, while the same wavefunctions yield the points 3 when their short-

range correlations are optimized using the generalized Lanczos operators. Here we

show only the results for one value of J/t for each of the two cases, while for other

values the behavior is qualitatively the same.7

5.2 Phase Separation

The wavefunction Eq. 5.1 describes a homogeneous electron distribution for all vari-

ational parameters. It cannot be used to model the phase separated region of the

phase diagram. Furthermore, true phase separation only occurs in the thermody-

namic limit. A finite but large enough system will show some density fluctuations

indicative of phase separation. Because parts of the system belong to one or the

other phase, we should expect a relatively large system to be necessary to show

these density fluctuations.

Alternatively, we can imagine the inhomogeneous system to be composed of many

smaller homogeneous systems of different densities. Whether the system exhibits

phase separation is the result of an energy balance between two cases: (a) the large

system is a mixture of subsystems of two different densities, or (b) all the subsystems

have the same density, i.e., the total system is homogeneous.

If the density of the total system is δ then a composition of subsytems with

densities δ1 and δ2 with the same total density will have an energy

Ecomposed(δ) =
δ1 − δ

δ1 − δ2

E(δ1) +
δ − δ2

δ1 − δ2

E(δ2) (5.3)

This is a straight line connecting the energies E(δ1) and E(δ2). This energy has to

be compared with E(δ) of the homogeneous system. If the composed system has a

7The particular values chosen here correspond to the region with finite superconducting long-
range order as shown later in section 5.3.

51



0 0.16 0.32 0.48

δ

−1.18

−1.16

−1.14

−1.12

−1.10

E(δ)

◦
◦ ◦

◦

�
�

...
...

....
.........................................

...
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

•
δc

...........................................................................................................................................................................................................

J/t = 1.0 (a)

0.0 0.5 1.0 1.5 2.0

J/t

1.0

0.8

0.6

0.4

0.2

0.0

δ

...............................................................................................................................................................................................................................................................................................................................................

(b) (PS)

inhomogeneous

homogeneous

...............
...............

................................
...................

δc

Figure 5.7: (a) Maxwell construction for J/t = 1.0. The straight line connecting
δ = 0 and δc lowers the energy. (b) phase separation line constructed from δc for
different values of J/t.

lower energy than the homogeneous one, then the system will phase separate. The

two densities which lead to the lowest energy determine the two components of the

phase separated groundstate. This is known as the Maxwell construction (e.g., see

[106]).

To perform the Maxwell construction we need an expression for the energy of

the homogeneous states as a function of the density δ. We can expect the energy of

the homogeneous states to be a smooth function of the density and approximate it

by a polynomial.

E(δ) =
∑

i

aiδ
i (5.4)

Together with the Heisenberg energy for the half filled case we know the energies

of the t-J model for each J/t for 4 densities, namely 0, 0.16, 0.32, and 0.48 cor-

responding to 0, 8, 16, and 24 holes on the 50 sites lattice. Each of these fillings

corresponds to a closed shell configuration, so that we can expect the finite size

effects to be minimal. The four values allow us to determine the coefficients of a

third order polynomial as follows
a0

0.16 a1

(0.16)2 a2

(0.16)3 a3

 =


1 0 0 0

−11
6

3 −3
2

1
3

1 −5
2

2 −1
2

−1
6

1
2
−1

2
1
6




E(0)
E(0.16)
E(0.32)
E(0.48)

 (5.5)

One of the two phases in the phase separated region corresponds to the density

δ = 0. The Maxwell construction finds a tangent to the polynomial starting from

E(0). This is shown in Fig. 5.7(a). The dotted line is the polynomial which runs

through the data points shown as ◦. The solid line is the tangent which connects

the point at δ = 0 with a point at δc. For 0 < δ < δc a lower energy can be obtained

by a mixture of the two phases. δc can be fround from the polynomial coefficients
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as

δc = − a2

2a3

(5.6)

While in Fig. 5.7(a) we have chosen a fixed J/t = 1.0, we can repeat this proce-

dure for each value of J/t. This results in the line shown in Fig. 5.7(b). Using

the energies from the 50 sites lattice we can describe a much larger system com-

posed of such smaller components. We can therefore expect that our result is a

resonable approximation of the thermodynamc limit. However, we only include ho-

mogeneous wavefunctions in our variational approach. We can therefore not exclude

the possibility that inhomogeneous phases other than a phase separated state have

a lower energy. Such phases include the formation of domain walls as conjectured

by Prelovšek and Zotos[36]. We should regard the line shown in Fig. 5.7(b) as a

lower bound for phase separation. Above this line some inhomogeneous state is

expected. To find out about the details of this state we would need to modify the

variational wavefunction or the generalized Lanczos operators to account for such

inhomogeneous phases.

The knowledge of a fit to the energy E(δ) as a function of the density gives us

the opportunity to test the influence of the finite size effects qualitatively. If we

perform the same optimization procedure including the Lanczos iteration with the

generalized operators for some open shell configurations, we arrive at the energies

shown as � in Fig. 5.7(a) for the fillings of 12 and 20 holes. We can see that these

values are in good agreement with the dotted curve, which is fitted to the closed

shell results (◦). Therefore, we can expect the the finite size effects for the dopings

in the range 0.16 < δ < 0.48 to be very small.

5.3 Superconducting Long-Range Order

To investigate the superconductivity we measure the pair-pair correlation function

C(R). This pair-pair correlation function is defined as

C(R) = (1/N)
∑

i

< ∆†
i∆i+R > (5.7)

where for ∆i we use a d-wave Cooper pair with short correlation length

∆i =
1

2

∑
σ

ci,−σ (ci+x̂,σ + ci−x̂,σ − ci+ŷ,σ − ci−ŷ,σ) (5.8)

We find that for the 50 sites lattice C(R) is flat for the larger distances indicating

that the finite size effects are small. We can therefore take C∞ = C(Rmax) as a

measure for long-range order. In the standard variational approach C∞ is a mono-
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tonic function of D and contains no additional information.8 However, we have seen

for the Heisenberg case in section 4.3 that the Lanczos iteration may change the

properties of the wavefunction so that the variational parameters in general have

no more any particular significance for a property like the behavior of C(R). It is

hence important that we measure an observable explicitly and do not infer it from

a variational parameter. In our case this means that we do not take D as a measure

for the superconducting long-range order but only use C∞ as a criterion.

With our new method of the generalized Lanczos iterations we can now test

how the introduction of the short-range operators A (Eq. (5.2)) in the wavefunction

affects C∞. If we start with too much long-range order the operators A will redis-

tribute the weight in the correlation function and suppress C∞. On the other hand

too small a value for C∞ will be enhanced. If we start with the correct long-range

order that corresponds to the groundstate, the operators A will only affect the short

range part of C(R) and C∞ will remain constant. In that case we have effectively

separated the short- and long-range parts of the wavefunction.

We will illustrate this for the case of 8 holes on 50 sites corresponding to a hole

density of 0.16. In Fig. 5.8(a) we show C(R) for one value of D = 0.4t and µ = −0.8t.

The solid line corresponds to the RR-wavefunction. We can see that the long-range

tail is well saturated. For J < Jc the long-range correlations are suppressed, while

for J > Jc they are enhanced. This is shown by the dashed lines. For D = 0.4t we

find Jc ≈ 1.0t. We can now combine the data obtained for different gap parameters

D. In Fig. 5.8(b) we show C∞ as a function of the coupling constant J/t. The solid

line again corresponds to the RR-value while the dashed line shows the suppression

and enhancement for the RRGL-values, i.e., after the Lanczos iteration. The point

where the solid and dashed lines cross is the value C̃∞ which remains unchanged

under iteration and we take this as the long-range order C∞ of the groundstate.

For other values of the variational parameter D we repeat the same procedure and

obtain the points shown in Fig. 5.8(b). The error bars in J/t indicate the region

where the suppression or enhancement is within one standard deviation. We can

thus map out C̃∞(J/t) for the groundstate. The extrapolation from small values of

C̃∞ to zero leads to an estimate of the critical Js above which the system exhibits

superconducting long-range order. For the this particular hole doping of δ = 0.16

we obtain Js = (0.39± 0.03)t.

The pair creation operator ∆i (Eq. (5.8)) is a special case of the general pair

creation operator

∆F
i =

1

2

∑
σ,τ

F (τ)ci,−σci+τ,σ (5.9)

8The variational parameter µ also influences C∞ to some extent, but for a fixed value of µ C∞
is monotonic in D.
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Figure 5.8: (a) d-wave pair-pair correlation function C(R) as a function of distance
for a hole density of 0.16 and a gap parameter D = 0.4t. The solid line corresponds
to the raw RR wavefunction. The dashed lines show the long range correlation
for the RRGL improvement for a value of J > J0 and J < J0 respectively. At
the critical value J0 the long-range correlation is unchanged from the RR ansatz.
(b) long-range d-wave correlation C∞ as a function of coupling constant J/t. The
solid and dashed lines show C∞ for the same gap parameter as in (a). For other
variational parameters only the points C̃∞(J/t) where C∞ is unchanged are shown.55



where F (τ) is the form factor of the cooper pair. With a Hamiltonian that has

only nearest neighbor interactions it is resonable to assume a form factor which is

negligible for distances larger than one lattice spacing. This is also motivated by

mean field approximations which lend themselves to the ansatz Eq. (5.1). Even if

the actual cooper pairs of the groundstate should extend further, the overlap with

the pair created by ∆i will still be large. The long-range order C̃∞ that we observe

would then be slightly smaller than the true value but it still measures the existence

of long-range order and can be used to determine onset of superconducitvity in the

phase diagram.

The size of the cooper pair also determines how large a system we have to use

in order to have only negligible finite size effects for the superconducting phase.

With a cooper pair that extends only to the nearest neighbor sites two pairs do not

overlap anymore when they are more than two lattice spacings apart. This can be

clearly seen in Fig. 5.8 — the large fluctuations of C(R) die out at a distance of 2.

Furthermore, the Lanczos iteration does not extend this range of the fluctuations.

This is another confirmation that the cooper pairs in the groundstate have a short

correlation length. It also shows that the largest available distance of 5 lattice

spacings reflects the long-range behaviour very well.

This later condition is questionable for the 16 sites lattice, which was used for

the exact diagonalization by Dagotto and Riera[40]. It’s largest available distance

is only 2
√

2 ≈ 2.83. Nevertheless we can use the 16 sites lattice again to test the

reliability of our approach by a comparison to the exact results. Fig. 5.9 shows

the long distance pair-pair correlation C̃∞ and the superconducting structure factor

Ssc(q = 0) as a function of the coupling constant and compares them to the exact

results. Neither of the two go to zero at any value of J/t, which is due to the rather

small size of the system and does not indicate superconducting order. However, we

can clearly reproduce the strong enhancement which was seen in the exact results at

intermediate values of J/t. The sharp drop at the phase separation boundary cannot

be found using the homogeneous ansatz Eq. (5.1) for the wavefunction. These results

are again a comfirmation that our new approach produces reliable results.

The convergence to the groundstate can also be seen in more detail if we plot the

energy versus C∞. This is shown in Fig. 5.10 for 3 values of J/t. For each value of

J/t the groundstate has a certain value for the energy and for C∞, i.e., it corresponds

to a point in the E versus C∞ diagram. A variational wavefunction will always have

a higher energy but can have an arbitrary value for C∞. The Lanczos iteration will

take each starting wavefunction closer to the groundstate. This is indicated by the

dotted lines in Fig. 5.10, which connect corresponding points before and after the

Lanczos iteration. The 3 graphs illustrate the cases (a) J/t = 0.2 below the onset
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Figure 5.9: Comparison of our approach with exact diagonalization. Shown are
the long-range pair-pair correlation C∞ and the superconducting structure factor
S(q = 0). Except for the phase separated region at high values of J/t our results
(•) reproduce the exact results (◦) rather well.
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Figure 5.10: Energy versus long-range pair-pair correlation for a hole density of
δ = 0.16. Each pair of points connected by a dotted line corresponds to a different
variational wavefunction before and after the Lanczos iteration. The energy is always
lowered by the Lanczos iteration while C∞ can be enhanced or suppressed.
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Figure 5.11: Phase diagram of the t-J model. The points denote the onset of d-
wave superconducting long-range order as obtained by measuring the long-range
pair-pair correlation of the groundstate C̃∞. Also shown is the phase separation line
as obtained by the Maxwell construction. The shaded region shows a region d-wave
superconductivity which we can follow down to a hole density of δ = 0.16.

of long-range order, (b) J/t = 0.5 with a small but finite long-range order, and (c)

J/t = 0.8 well within the superconducting region. Let us concentrate on case (b).

From standard variational Monte Carlo alone, i.e., taking only the upper points,

one would estimate a value of C∞ ∼ 0.03 for the groundstate. Using the Lanczos

iterations as just another way to construct a variational wavefunction would still

yield C∞ ∼ 0.025. Only the criterion of the stability of the long-range order against

the (short-ranged) Lanczos iteration as used above results in the value C̃∞ ≈ 0.01

which is clearly the most consistent limiting value for all the different variational

wavefunctions. The standard variational approach overestimates the superconduct-

ing order.9 Even one Lanczos iteration would overestimate the superconducting

order when only using the Rayleigh-Ritz criterion. With our new criterion however,

we are able to eliminate the bias of the variational approach.

5.4 The Phase Diagram

With the same procdure that we used in the last section for a hole density of δ = 0.16

we can determine the onset of superconductivity at other densities. Doing this we

9The variational wavefunctions are motivated by a mean field description and neglect quantum
fluctuations.
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arrive at the following values for Js.

δ Js

0.16 0.39± 0.03
0.24 0.60± 0.05
0.32 0.68± 0.06
0.40 0.70± 0.10
0.48 0.80± 0.10

This allows us to construct the phase diagram Fig. 5.11. With the 50 sites

lattice we can reliably determine the region of superconducting long-range order at

hole densities in the range of 0.16 < δ < 0.48. We would like to emphasize that this

system is large enough so that the finite size effects are negligible. This is qualitively

different from the results on small systems obtained by Dagotto and Riera[40] and

Ohta et al.[41]. Their system is too small to detect any long-range order. At the

largest distance available in the 16 and 18 sites lattices the cooper pairs are still very

close to each other and their correlation has not yet reached the large distance value.

This correlation will not be zero for the whole range of coupling constants J/t and

cannot be used to determine the onset of superconductivity but only be taken as an

indication of where the superconducting correlations are enhanced. Similarly, the

static structure factor, which is the integral of the correlation function, is dominated

by the short distances and has the same problems. This situation is quite different

on the 50 sites lattice. The correlation function has clearly saturated at its large

distance value and is a reliable measure for the long-range order. This allows us to

determine the transition to a phase with superconducting long-range order.

Beyond the solid line in the phase diagram, in the region labeled “inhomogeneous

phase”, our variational ansatz is not able to model the groundstate appropriately as

a mixture of two phases leads to a lower energy. From our data we are not able to

determine the nature of this groundstate. Depending on the coupling constant we

can expect different types states ranging from the formation of domain walls up to

true phase separation to occur. We can therefore conclude that the superconduc-

tivity extends at least up to the solid line, i.e., in the shaded region of the phase

diagram Fig. 5.11.
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Chapter 6

Conclusions

We have shown in this thesis that our new approach of using generalized Lanczos

operator provides a powerful unbiased way to systematically improve the variational

Monte Carlo method. While it provides more reliable information than just an upper

bound to the energy, it retains many of the advantages of a variational approach

and even improves them.

• The systems that can be investigated are only slightly smaller than for the

standard variational Monte Carlo, and they are certainly much larger than

those available for exact diagonalizations.

• As the wavefunction is explicitly given it is possible to investigate specific

instabilities like the formation of a BCS condensate or the formation of an-

tiferromagnetic long-range order. Using the generalized Lanczos operators

allows us to specify the nature of the variational state even more precisely.

• The systematic unbiased improvement obtained by the generalized Lanczos

iteration provides a good criterion to judge how closely the variational wave-

function models the groundstate. This information is obtained by comparing

both the energy and the variance before and after the iteration.

The results on the t-J model show that our method is able to produce non-

trivial results which are comparable to those obtained by exact diagonalization. In

extension to exact diagonalization we are able to investigate large enough systems

that allow us find a phase transistion to long-range order.

The success of our method originates mainly in the flexibility with which the

wavefunctions and generalized Lanczos operators can be chosen. In the case of the

t-J model we were able to address the short- and long-range behavior of the system

seperately. This feature can also be used in more general problems. Any Hamiltonian

for which we know a reasonably good variational wavefunction can be investigated

further using our approach. The Hamiltonian itself is enough to perform a Lanczos
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iteration and its form often may suggest generalizations. Furthermore, even if for

such a system it is not clear what a good choice for a variational ansatz would be,

then the (generalized) Lanczos iteration provides a good criterion to judge different

choices. Our method should therefore be viewed as a general tool used to improve

a variational Monte Carlo treatment.
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